Search a title or topic

Over 20 million podcasts, powered by 

Player FM logo
Artwork

Content provided by Marcel Kurovski. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Marcel Kurovski or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.
Player FM - Podcast App
Go offline with the Player FM app!

#3: Bandits and Simulators for Recommenders with Olivier Jeunen

1:12:54
 
Share
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on August 27, 2025 14:06 (4M ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 316525456 series 3288795
Content provided by Marcel Kurovski. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Marcel Kurovski or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.

In episode three I am joined by Olivier Jeunen, who is a postdoctoral scientist at Amazon. Olivier obtained his PhD from University of Antwerp with his work "Offline Approaches to Recommendation with Online Success". His work concentrates on Bandits, Reinforcement Learning and Causal Inference for Recommender Systems.

We talk about methods for evaluating online performance of recommender systems in an offline fashion and based on rich logging data. These methods stem from fields like bandit theory and reinforcement learning. They heavily rely on simulators whose benefits, requirements and limitations we discuss in greater detail. We further discuss the differences between organic and bandit feedback as well as what sets recommenders apart from advertising. We also talk about the right target for optimization and receive some advice to continue livelong learning as a researcher, be it in academia or industry.
Olivier has published multiple papers at RecSys, NeurIPS, WSDM, UMAP, and WWW. He also won the RecoGym challenge with his team from University of Antwerp. With research internships at Criteo, Facebook and Spotify Research he brings significant experience to the table.

Enjoy this enriching episode of RECSPERTS - Recommender Systems Experts.

Links from this Episode:

Thesis and Papers:

General Links:

  continue reading

30 episodes

Artwork
iconShare
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on August 27, 2025 14:06 (4M ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 316525456 series 3288795
Content provided by Marcel Kurovski. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Marcel Kurovski or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.

In episode three I am joined by Olivier Jeunen, who is a postdoctoral scientist at Amazon. Olivier obtained his PhD from University of Antwerp with his work "Offline Approaches to Recommendation with Online Success". His work concentrates on Bandits, Reinforcement Learning and Causal Inference for Recommender Systems.

We talk about methods for evaluating online performance of recommender systems in an offline fashion and based on rich logging data. These methods stem from fields like bandit theory and reinforcement learning. They heavily rely on simulators whose benefits, requirements and limitations we discuss in greater detail. We further discuss the differences between organic and bandit feedback as well as what sets recommenders apart from advertising. We also talk about the right target for optimization and receive some advice to continue livelong learning as a researcher, be it in academia or industry.
Olivier has published multiple papers at RecSys, NeurIPS, WSDM, UMAP, and WWW. He also won the RecoGym challenge with his team from University of Antwerp. With research internships at Criteo, Facebook and Spotify Research he brings significant experience to the table.

Enjoy this enriching episode of RECSPERTS - Recommender Systems Experts.

Links from this Episode:

Thesis and Papers:

General Links:

  continue reading

30 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Copyright 2025 | Privacy Policy | Terms of Service | | Copyright
Listen to this show while you explore
Play