Search a title or topic

Over 20 million podcasts, powered by 

Player FM logo
Artwork

Content provided by Marcel Kurovski. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Marcel Kurovski or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.
Player FM - Podcast App
Go offline with the Player FM app!

#2: Deep Learning based Recommender Systems with Even Oldridge

50:07
 
Share
 

Manage episode 313806162 series 3288795
Content provided by Marcel Kurovski. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Marcel Kurovski or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.

In episode two I am joined by Even Oldridge, Senior Manager at NVIDIA, who is leading the Merlin Team. These people are working on an open-source framework for building large-scale deep learning recommender systems and have already won numerous RecSys competitions.

We talk about the relevance and impact of deep learning applied to recommender systems as well as the challenges and pitfalls of deep learning based recommender systems. We briefly touch on Even's early data science contributions at PlentyOfFish, a Canadian online-dating platform. Starting with personalized recommendations of people to people he transitioned to realtor, a real-estate marketplace. From the potentially biggest social decision in life to the probably biggest financial decision in life he has really been involved with recommender systems at the extremes. At NVIDIA - to which he refers as the one company that works with all the other AI companies - he pushes for Merlin as large-scale, accessible and efficient platform for developing and deploying recommender systems on GPUs.
This brought him also closer to the community which he served as industry Co-Chair at RecSys in 2021 as well as to winning multiple RecSys competitions with his team in the recent years.

Enjoy this enriching episode of RECSPERTS - Recommender Systems Experts.

Links from this Episode:

Papers

General Links:

  continue reading

29 episodes

Artwork
iconShare
 
Manage episode 313806162 series 3288795
Content provided by Marcel Kurovski. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Marcel Kurovski or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.

In episode two I am joined by Even Oldridge, Senior Manager at NVIDIA, who is leading the Merlin Team. These people are working on an open-source framework for building large-scale deep learning recommender systems and have already won numerous RecSys competitions.

We talk about the relevance and impact of deep learning applied to recommender systems as well as the challenges and pitfalls of deep learning based recommender systems. We briefly touch on Even's early data science contributions at PlentyOfFish, a Canadian online-dating platform. Starting with personalized recommendations of people to people he transitioned to realtor, a real-estate marketplace. From the potentially biggest social decision in life to the probably biggest financial decision in life he has really been involved with recommender systems at the extremes. At NVIDIA - to which he refers as the one company that works with all the other AI companies - he pushes for Merlin as large-scale, accessible and efficient platform for developing and deploying recommender systems on GPUs.
This brought him also closer to the community which he served as industry Co-Chair at RecSys in 2021 as well as to winning multiple RecSys competitions with his team in the recent years.

Enjoy this enriching episode of RECSPERTS - Recommender Systems Experts.

Links from this Episode:

Papers

General Links:

  continue reading

29 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Copyright 2025 | Privacy Policy | Terms of Service | | Copyright
Listen to this show while you explore
Play