Search a title or topic

Over 20 million podcasts, powered by 

Player FM logo
Artwork

Content provided by Oncotarget Podcast. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Oncotarget Podcast or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Aramchol Boosts Regorafenib Effectiveness in Gastrointestinal Tumors

3:35
 
Share
 

Manage episode 501221731 series 1754503
Content provided by Oncotarget Podcast. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Oncotarget Podcast or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.
BUFFALO, NY – August 19, 2025 – A new #research paper was #published in Volume 16 of Oncotarget on August 19, 2025, titled “The SCD1 inhibitor aramchol interacts with regorafenib to kill GI tumor cells in vitro and in vivo.” In this study, led by first authors Laurence Booth and Michael R. Booth, along with corresponding author Paul Dent from Virginia Commonwealth University, researchers investigated how aramchol, a drug originally developed for liver disease, works with the cancer drug regorafenib in gastrointestinal (GI) tumor cells. They found that the combination is effective, especially in tumor cells with a specific genetic variant. The combined approach offers a potential new strategy for treating liver and colon cancers. Gastrointestinal cancers, such as liver and colon cancer, are serious global health challenges. Regorafenib, already approved for cancer treatment, can have limited impact and frequently causes side effects. Aramchol, a drug developed to treat fatty liver disease, affects how cancer cells process fats and energy. In this study, researchers tested whether combining these two drugs could improve GI cancer treatment, both in cells and mouse models. The results showed that the drug combination killed liver and colorectal cancer cells more effectively than either drug alone. In animal models, mice with human liver tumors had slower tumor growth, without showing signs of weight loss or other toxicity. The researchers also found that aramchol and regorafenib work together to block important survival pathways inside cancer cells. This combination was especially effective in cells with a genetic variant called ATG16L1 T300, which is more common in people of African ancestry. The treatment triggered stress responses in the cancer cells and disrupted key proteins required for survival. It also activated autophagy, a natural recycling process that clears out damaged parts, eventually leading to cancer cell death. “Aramchol interacted with the multi-kinase inhibitors sorafenib, regorafenib or lenvatinib, to kill GI tumor cells, with regorafenib exhibiting the greatest effect.” Aramchol is currently in clinical trials for fatty liver disease and has a well-established safety profile, while regorafenib is already FDA-approved for cancer treatment. Together, their combination could advance fast into clinical testing for patients with GI cancers. However, researchers note that additional studies are needed to support the launch of early-phase clinical trials. Altogether, this study may offer a more effective and less toxic alternative to current treatments for GI cancers. It also highlights the role of genetic variants in shaping treatment response, suggesting that future therapies could be more precisely tailored to each patient’s unique genetic profile. DOI - https://doi.org/10.18632/oncotarget.28762 Correspondence to - Paul Dent - [email protected] Video short - https://www.youtube.com/watch?v=5saAqsqxi-Q Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28762 Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ Keywords - cancer, macroautophagy, flux; ER stress, aramchol, regorafenib To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh [email protected]
  continue reading

578 episodes

Artwork
iconShare
 
Manage episode 501221731 series 1754503
Content provided by Oncotarget Podcast. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Oncotarget Podcast or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.
BUFFALO, NY – August 19, 2025 – A new #research paper was #published in Volume 16 of Oncotarget on August 19, 2025, titled “The SCD1 inhibitor aramchol interacts with regorafenib to kill GI tumor cells in vitro and in vivo.” In this study, led by first authors Laurence Booth and Michael R. Booth, along with corresponding author Paul Dent from Virginia Commonwealth University, researchers investigated how aramchol, a drug originally developed for liver disease, works with the cancer drug regorafenib in gastrointestinal (GI) tumor cells. They found that the combination is effective, especially in tumor cells with a specific genetic variant. The combined approach offers a potential new strategy for treating liver and colon cancers. Gastrointestinal cancers, such as liver and colon cancer, are serious global health challenges. Regorafenib, already approved for cancer treatment, can have limited impact and frequently causes side effects. Aramchol, a drug developed to treat fatty liver disease, affects how cancer cells process fats and energy. In this study, researchers tested whether combining these two drugs could improve GI cancer treatment, both in cells and mouse models. The results showed that the drug combination killed liver and colorectal cancer cells more effectively than either drug alone. In animal models, mice with human liver tumors had slower tumor growth, without showing signs of weight loss or other toxicity. The researchers also found that aramchol and regorafenib work together to block important survival pathways inside cancer cells. This combination was especially effective in cells with a genetic variant called ATG16L1 T300, which is more common in people of African ancestry. The treatment triggered stress responses in the cancer cells and disrupted key proteins required for survival. It also activated autophagy, a natural recycling process that clears out damaged parts, eventually leading to cancer cell death. “Aramchol interacted with the multi-kinase inhibitors sorafenib, regorafenib or lenvatinib, to kill GI tumor cells, with regorafenib exhibiting the greatest effect.” Aramchol is currently in clinical trials for fatty liver disease and has a well-established safety profile, while regorafenib is already FDA-approved for cancer treatment. Together, their combination could advance fast into clinical testing for patients with GI cancers. However, researchers note that additional studies are needed to support the launch of early-phase clinical trials. Altogether, this study may offer a more effective and less toxic alternative to current treatments for GI cancers. It also highlights the role of genetic variants in shaping treatment response, suggesting that future therapies could be more precisely tailored to each patient’s unique genetic profile. DOI - https://doi.org/10.18632/oncotarget.28762 Correspondence to - Paul Dent - [email protected] Video short - https://www.youtube.com/watch?v=5saAqsqxi-Q Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28762 Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ Keywords - cancer, macroautophagy, flux; ER stress, aramchol, regorafenib To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh [email protected]
  continue reading

578 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Copyright 2025 | Privacy Policy | Terms of Service | | Copyright
Listen to this show while you explore
Play