Search a title or topic

Over 20 million podcasts, powered by 

Player FM logo
Artwork

Content provided by Jason Edwards. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Jason Edwards or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Episode 21 — Common Pitfalls and Bias in AI Systems

32:34
 
Share
 

Manage episode 505486172 series 3689029
Content provided by Jason Edwards. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Jason Edwards or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.

AI systems are only as good as the data and assumptions that shape them, and many fail because of recurring pitfalls. This episode outlines the most common problems, starting with poor data quality, unbalanced datasets, and labeling errors. We’ll discuss sampling bias, measurement bias, and the use of proxy variables that inadvertently encode sensitive traits. Overfitting, underfitting, and automation bias — where humans over-trust machine outputs — are introduced as technical and human pitfalls alike.

We then focus on bias as a deeper issue. Historical inequalities embedded in data can create systems that reinforce discrimination, from facial recognition tools with unequal accuracy to hiring algorithms that favor certain demographics. We cover strategies for detecting and mitigating bias, including pre-processing corrections, algorithmic adjustments, and post-processing interventions. Governance, documentation, and human oversight are emphasized as necessary complements to technical fixes. By the end, listeners will understand that building fair and trustworthy AI requires vigilance not just during design, but throughout deployment and use. Produced by BareMetalCyber.com, where you’ll find more cyber prepcasts, books, and information to strengthen your certification path.

  continue reading

48 episodes

Artwork
iconShare
 
Manage episode 505486172 series 3689029
Content provided by Jason Edwards. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Jason Edwards or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.

AI systems are only as good as the data and assumptions that shape them, and many fail because of recurring pitfalls. This episode outlines the most common problems, starting with poor data quality, unbalanced datasets, and labeling errors. We’ll discuss sampling bias, measurement bias, and the use of proxy variables that inadvertently encode sensitive traits. Overfitting, underfitting, and automation bias — where humans over-trust machine outputs — are introduced as technical and human pitfalls alike.

We then focus on bias as a deeper issue. Historical inequalities embedded in data can create systems that reinforce discrimination, from facial recognition tools with unequal accuracy to hiring algorithms that favor certain demographics. We cover strategies for detecting and mitigating bias, including pre-processing corrections, algorithmic adjustments, and post-processing interventions. Governance, documentation, and human oversight are emphasized as necessary complements to technical fixes. By the end, listeners will understand that building fair and trustworthy AI requires vigilance not just during design, but throughout deployment and use. Produced by BareMetalCyber.com, where you’ll find more cyber prepcasts, books, and information to strengthen your certification path.

  continue reading

48 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Copyright 2025 | Privacy Policy | Terms of Service | | Copyright
Listen to this show while you explore
Play