Search a title or topic

Over 20 million podcasts, powered by 

Player FM logo
Artwork

Content provided by Jason Edwards. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Jason Edwards or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Episode 20 — Evaluating AI Performance

31:38
 
Share
 

Manage episode 505486171 series 3689029
Content provided by Jason Edwards. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Jason Edwards or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.

Knowing that an AI model works is not enough — we need to know how well it works, and under what conditions. This episode explores the frameworks and metrics used to evaluate AI performance. We begin with accuracy, precision, recall, F1 score, and confusion matrices for classification problems, then move to regression metrics like mean squared error and R². For clustering and ranking tasks, we cover silhouette scores, adjusted Rand index, and average precision. Each metric is explained not just technically, but in terms of what it reveals — and what it hides — about system performance.

Evaluation goes beyond numbers. Robustness testing with noisy or adversarial data shows whether a model will hold up in real-world conditions. Fairness evaluation ensures systems do not perform unequally across demographics, while explainability testing helps determine if results can be trusted by human decision-makers. We’ll also discuss benchmarks, competitions, and continuous monitoring after deployment. By the end of this episode, listeners will understand that evaluation is a multidimensional process, linking technical performance to fairness, accountability, and reliability. Produced by BareMetalCyber.com, where you’ll find more cyber prepcasts, books, and information to strengthen your certification path.

  continue reading

48 episodes

Artwork
iconShare
 
Manage episode 505486171 series 3689029
Content provided by Jason Edwards. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Jason Edwards or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.

Knowing that an AI model works is not enough — we need to know how well it works, and under what conditions. This episode explores the frameworks and metrics used to evaluate AI performance. We begin with accuracy, precision, recall, F1 score, and confusion matrices for classification problems, then move to regression metrics like mean squared error and R². For clustering and ranking tasks, we cover silhouette scores, adjusted Rand index, and average precision. Each metric is explained not just technically, but in terms of what it reveals — and what it hides — about system performance.

Evaluation goes beyond numbers. Robustness testing with noisy or adversarial data shows whether a model will hold up in real-world conditions. Fairness evaluation ensures systems do not perform unequally across demographics, while explainability testing helps determine if results can be trusted by human decision-makers. We’ll also discuss benchmarks, competitions, and continuous monitoring after deployment. By the end of this episode, listeners will understand that evaluation is a multidimensional process, linking technical performance to fairness, accountability, and reliability. Produced by BareMetalCyber.com, where you’ll find more cyber prepcasts, books, and information to strengthen your certification path.

  continue reading

48 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Copyright 2025 | Privacy Policy | Terms of Service | | Copyright
Listen to this show while you explore
Play