Search a title or topic

Over 20 million podcasts, powered by 

Player FM logo
Artwork

Content provided by Hugo Bowne-Anderson. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Hugo Bowne-Anderson or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Episode 55: From Frittatas to Production LLMs: Breakfast at SciPy

38:08
 
Share
 

Manage episode 499818283 series 3317544
Content provided by Hugo Bowne-Anderson. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Hugo Bowne-Anderson or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.

Traditional software expects 100% passing tests. In LLM-powered systems, that’s not just unrealistic — it’s a feature, not a bug. Eric Ma leads research data science in Moderna’s data science and AI group, and over breakfast at SciPy we explored why AI products break the old rules, what skills different personas bring (and miss), and how to keep systems alive after the launch hype fades.

You’ll hear the clink of coffee cups, the murmur of SciPy in the background, and the occasional bite of frittata as we talk (hopefully also a feature, not a bug!)

We talk through:
• The three personas — and the blind spots each has when shipping AI systems
• Why “perfect” tests can be a sign you’re testing the wrong thing
• Development vs. production observability loops — and why you need both
• How curiosity about failing data separates good builders from great ones
• Ways large organizations can create space for experimentation without losing delivery focus

If you want to build AI products that thrive in the messy real world, this episode will help you embrace the chaos — and make it work for you.

LINKS

🎓 Learn more:

  continue reading

56 episodes

Artwork
iconShare
 
Manage episode 499818283 series 3317544
Content provided by Hugo Bowne-Anderson. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Hugo Bowne-Anderson or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.

Traditional software expects 100% passing tests. In LLM-powered systems, that’s not just unrealistic — it’s a feature, not a bug. Eric Ma leads research data science in Moderna’s data science and AI group, and over breakfast at SciPy we explored why AI products break the old rules, what skills different personas bring (and miss), and how to keep systems alive after the launch hype fades.

You’ll hear the clink of coffee cups, the murmur of SciPy in the background, and the occasional bite of frittata as we talk (hopefully also a feature, not a bug!)

We talk through:
• The three personas — and the blind spots each has when shipping AI systems
• Why “perfect” tests can be a sign you’re testing the wrong thing
• Development vs. production observability loops — and why you need both
• How curiosity about failing data separates good builders from great ones
• Ways large organizations can create space for experimentation without losing delivery focus

If you want to build AI products that thrive in the messy real world, this episode will help you embrace the chaos — and make it work for you.

LINKS

🎓 Learn more:

  continue reading

56 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Copyright 2025 | Privacy Policy | Terms of Service | | Copyright
Listen to this show while you explore
Play