An award-winning cannabis podcast for women, by women. Hear joyful stories and useful advice about cannabis for health, well-being, and fun—especially for needs specific to women like stress, sleep, and sex. We cover everything from: What’s the best weed for sex? Can I use CBD for menstrual cramps? What are the effects of the Harlequin strain or Gelato strain? And, why do we prefer to call it “cannabis” instead of “marijuana”? We also hear from you: your first time buying legal weed, and how ...
…
continue reading
Content provided by UCTV. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by UCTV or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.
Player FM - Podcast App
Go offline with the Player FM app!
Go offline with the Player FM app!
A Closer Look at…Genetic Medicine and Artificial Intelligence
MP4•Episode home
Manage episode 502407794 series 1457369
Content provided by UCTV. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by UCTV or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.
AI and genetic medicine are converging to transform how we diagnose, treat, and prevent disease. Gene Yeo, Ph.D., unites RNA biology with artificial intelligence to speed the path from genome sequencing to personalized RNA therapeutics. Advances in sequencing have reduced costs dramatically, making interpretation and translation into treatments the real challenge. Using deep learning and large datasets of RNA-binding proteins, Yeo predicts disease vulnerabilities and identifies therapeutic targets, including in neurodegeneration and muscular diseases. Alexis Komor, Ph.D., focuses on DNA, explaining human genetic variation—particularly single-nucleotide variants—and how genome editing technologies like CRISPR can target them. She highlights strategies to correct harmful mutations and explores precise, programmable interventions. Together, their research drives discovery and enables more effective, personalized therapies. Series: "Stem Cell Channel" [Health and Medicine] [Science] [Show ID: 40459]
…
continue reading
211 episodes
MP4•Episode home
Manage episode 502407794 series 1457369
Content provided by UCTV. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by UCTV or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.
AI and genetic medicine are converging to transform how we diagnose, treat, and prevent disease. Gene Yeo, Ph.D., unites RNA biology with artificial intelligence to speed the path from genome sequencing to personalized RNA therapeutics. Advances in sequencing have reduced costs dramatically, making interpretation and translation into treatments the real challenge. Using deep learning and large datasets of RNA-binding proteins, Yeo predicts disease vulnerabilities and identifies therapeutic targets, including in neurodegeneration and muscular diseases. Alexis Komor, Ph.D., focuses on DNA, explaining human genetic variation—particularly single-nucleotide variants—and how genome editing technologies like CRISPR can target them. She highlights strategies to correct harmful mutations and explores precise, programmable interventions. Together, their research drives discovery and enables more effective, personalized therapies. Series: "Stem Cell Channel" [Health and Medicine] [Science] [Show ID: 40459]
…
continue reading
211 episodes
همه قسمت ها
×Welcome to Player FM!
Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.