Search a title or topic

Over 20 million podcasts, powered by 

Player FM logo
Artwork

Content provided by TWIML and Sam Charrington. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by TWIML and Sam Charrington or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Generative Benchmarking with Kelly Hong - #728

54:17
 
Share
 

Manage episode 478639901 series 2355587
Content provided by TWIML and Sam Charrington. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by TWIML and Sam Charrington or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.

In this episode, Kelly Hong, a researcher at Chroma, joins us to discuss "Generative Benchmarking," a novel approach to evaluating retrieval systems, like RAG applications, using synthetic data. Kelly explains how traditional benchmarks like MTEB fail to represent real-world query patterns and how embedding models that perform well on public benchmarks often underperform in production. The conversation explores the two-step process of Generative Benchmarking: filtering documents to focus on relevant content and generating queries that mimic actual user behavior. Kelly shares insights from applying this approach to Weights & Biases' technical support bot, revealing how domain-specific evaluation provides more accurate assessments of embedding model performance. We also discuss the importance of aligning LLM judges with human preferences, the impact of chunking strategies on retrieval effectiveness, and how production queries differ from benchmark queries in ambiguity and style. Throughout the episode, Kelly emphasizes the need for systematic evaluation approaches that go beyond "vibe checks" to help developers build more effective RAG applications.

The complete show notes for this episode can be found at https://twimlai.com/go/728.

  continue reading

747 episodes

Artwork
iconShare
 
Manage episode 478639901 series 2355587
Content provided by TWIML and Sam Charrington. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by TWIML and Sam Charrington or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.

In this episode, Kelly Hong, a researcher at Chroma, joins us to discuss "Generative Benchmarking," a novel approach to evaluating retrieval systems, like RAG applications, using synthetic data. Kelly explains how traditional benchmarks like MTEB fail to represent real-world query patterns and how embedding models that perform well on public benchmarks often underperform in production. The conversation explores the two-step process of Generative Benchmarking: filtering documents to focus on relevant content and generating queries that mimic actual user behavior. Kelly shares insights from applying this approach to Weights & Biases' technical support bot, revealing how domain-specific evaluation provides more accurate assessments of embedding model performance. We also discuss the importance of aligning LLM judges with human preferences, the impact of chunking strategies on retrieval effectiveness, and how production queries differ from benchmark queries in ambiguity and style. Throughout the episode, Kelly emphasizes the need for systematic evaluation approaches that go beyond "vibe checks" to help developers build more effective RAG applications.

The complete show notes for this episode can be found at https://twimlai.com/go/728.

  continue reading

747 episodes

Alle Folgen

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Listen to this show while you explore
Play