Search a title or topic

Over 20 million podcasts, powered by 

Player FM logo
Artwork

Content provided by TWIML and Sam Charrington. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by TWIML and Sam Charrington or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Ensuring Privacy for Any LLM with Patricia Thaine - #716

51:33
 
Share
 

Manage episode 463634929 series 2355587
Content provided by TWIML and Sam Charrington. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by TWIML and Sam Charrington or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.

Today, we're joined by Patricia Thaine, co-founder and CEO of Private AI to discuss techniques for ensuring privacy, data minimization, and compliance when using 3rd-party large language models (LLMs) and other AI services. We explore the risks of data leakage from LLMs and embeddings, the complexities of identifying and redacting personal information across various data flows, and the approach Private AI has taken to mitigate these risks. We also dig into the challenges of entity recognition in multimodal systems including OCR files, documents, images, and audio, and the importance of data quality and model accuracy. Additionally, Patricia shares insights on the limitations of data anonymization, the benefits of balancing real-world and synthetic data in model training and development, and the relationship between privacy and bias in AI. Finally, we touch on the evolving landscape of AI regulations like GDPR, CPRA, and the EU AI Act, and the future of privacy in artificial intelligence.

The complete show notes for this episode can be found at https://twimlai.com/go/716.

  continue reading

747 episodes

Artwork
iconShare
 
Manage episode 463634929 series 2355587
Content provided by TWIML and Sam Charrington. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by TWIML and Sam Charrington or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.

Today, we're joined by Patricia Thaine, co-founder and CEO of Private AI to discuss techniques for ensuring privacy, data minimization, and compliance when using 3rd-party large language models (LLMs) and other AI services. We explore the risks of data leakage from LLMs and embeddings, the complexities of identifying and redacting personal information across various data flows, and the approach Private AI has taken to mitigate these risks. We also dig into the challenges of entity recognition in multimodal systems including OCR files, documents, images, and audio, and the importance of data quality and model accuracy. Additionally, Patricia shares insights on the limitations of data anonymization, the benefits of balancing real-world and synthetic data in model training and development, and the relationship between privacy and bias in AI. Finally, we touch on the evolving landscape of AI regulations like GDPR, CPRA, and the EU AI Act, and the future of privacy in artificial intelligence.

The complete show notes for this episode can be found at https://twimlai.com/go/716.

  continue reading

747 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Listen to this show while you explore
Play