Search a title or topic

Over 20 million podcasts, powered by 

Player FM logo
Artwork

Content provided by TWIML and Sam Charrington. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by TWIML and Sam Charrington or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Accelerating AI Training and Inference with AWS Trainium2 with Ron Diamant - #720

1:07:05
 
Share
 

Manage episode 468241491 series 2355587
Content provided by TWIML and Sam Charrington. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by TWIML and Sam Charrington or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.

Today, we're joined by Ron Diamant, chief architect for Trainium at Amazon Web Services, to discuss hardware acceleration for generative AI and the design and role of the recently released Trainium2 chip. We explore the architectural differences between Trainium and GPUs, highlighting its systolic array-based compute design, and how it balances performance across key dimensions like compute, memory bandwidth, memory capacity, and network bandwidth. We also discuss the Trainium tooling ecosystem including the Neuron SDK, Neuron Compiler, and Neuron Kernel Interface (NKI). We also dig into the various ways Trainum2 is offered, including Trn2 instances, UltraServers, and UltraClusters, and access through managed services like AWS Bedrock. Finally, we cover sparsity optimizations, customer adoption, performance benchmarks, support for Mixture of Experts (MoE) models, and what’s next for Trainium.

The complete show notes for this episode can be found at https://twimlai.com/go/720.

  continue reading

747 episodes

Artwork
iconShare
 
Manage episode 468241491 series 2355587
Content provided by TWIML and Sam Charrington. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by TWIML and Sam Charrington or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.

Today, we're joined by Ron Diamant, chief architect for Trainium at Amazon Web Services, to discuss hardware acceleration for generative AI and the design and role of the recently released Trainium2 chip. We explore the architectural differences between Trainium and GPUs, highlighting its systolic array-based compute design, and how it balances performance across key dimensions like compute, memory bandwidth, memory capacity, and network bandwidth. We also discuss the Trainium tooling ecosystem including the Neuron SDK, Neuron Compiler, and Neuron Kernel Interface (NKI). We also dig into the various ways Trainum2 is offered, including Trn2 instances, UltraServers, and UltraClusters, and access through managed services like AWS Bedrock. Finally, we cover sparsity optimizations, customer adoption, performance benchmarks, support for Mixture of Experts (MoE) models, and what’s next for Trainium.

The complete show notes for this episode can be found at https://twimlai.com/go/720.

  continue reading

747 episodes

Alle episoder

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Listen to this show while you explore
Play