Flash Forward is a show about possible (and not so possible) future scenarios. What would the warranty on a sex robot look like? How would diplomacy work if we couldn’t lie? Could there ever be a fecal transplant black market? (Complicated, it wouldn’t, and yes, respectively, in case you’re curious.) Hosted and produced by award winning science journalist Rose Eveleth, each episode combines audio drama and journalism to go deep on potential tomorrows, and uncovers what those futures might re ...
…
continue reading
Content provided by The Thesis Review and Sean Welleck. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by The Thesis Review and Sean Welleck or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!
Go offline with the Player FM app!
[22] Graham Neubig - Unsupervised Learning of Lexical Information
MP3•Episode home
Manage episode 302418423 series 2982803
Content provided by The Thesis Review and Sean Welleck. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by The Thesis Review and Sean Welleck or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.
Graham Neubig is an Associate Professor at Carnegie Mellon University. His research focuses on language and its role in human communication, with the goal of breaking down barriers in human-human or human-machine communication through the development of NLP technologies. Graham’s PhD thesis is titled "Unsupervised Learning of Lexical Information for Language Processing Systems", which he completed in 2012 at Kyoto University. We discuss his PhD work related to the fundamental processing units that NLP systems use to process text, including non-parametric Bayesian models, segmentation, and alignment problems, and discuss how his perspective on machine translation has evolved over time. Episode notes: http://cs.nyu.edu/~welleck/episode22.html Follow the Thesis Review (@thesisreview) and Sean Welleck (@wellecks) on Twitter, and find out more info about the show at http://cs.nyu.edu/~welleck/podcast.html Support The Thesis Review at www.patreon.com/thesisreview or www.buymeacoffee.com/thesisreview
…
continue reading
49 episodes
MP3•Episode home
Manage episode 302418423 series 2982803
Content provided by The Thesis Review and Sean Welleck. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by The Thesis Review and Sean Welleck or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.
Graham Neubig is an Associate Professor at Carnegie Mellon University. His research focuses on language and its role in human communication, with the goal of breaking down barriers in human-human or human-machine communication through the development of NLP technologies. Graham’s PhD thesis is titled "Unsupervised Learning of Lexical Information for Language Processing Systems", which he completed in 2012 at Kyoto University. We discuss his PhD work related to the fundamental processing units that NLP systems use to process text, including non-parametric Bayesian models, segmentation, and alignment problems, and discuss how his perspective on machine translation has evolved over time. Episode notes: http://cs.nyu.edu/~welleck/episode22.html Follow the Thesis Review (@thesisreview) and Sean Welleck (@wellecks) on Twitter, and find out more info about the show at http://cs.nyu.edu/~welleck/podcast.html Support The Thesis Review at www.patreon.com/thesisreview or www.buymeacoffee.com/thesisreview
…
continue reading
49 episodes
All episodes
×Welcome to Player FM!
Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.