Go offline with the Player FM app!
How Can We Solve Observability's Data Capture and Spending Problem?
Manage episode 520353490 series 75006
DevOps practitioners — whether developers, operators, SREs or business stakeholders — increasingly rely on telemetry to guide decisions, yet face growing complexity, siloed teams and rising observability costs. In a conversation at KubeCon + CloudNativeCon North America, IBM’s Jacob Yackenovich emphasized the importance of collecting high-granularity, full-capture data to avoid missing critical performance signals across hybrid application stacks that blend legacy and cloud-native components. He argued that observability must evolve to serve both technical and nontechnical users, enabling teams to focus on issues based on real business impact rather than subjective judgment.
AI’s rapid integration into applications introduces new observability challenges. Yackenovich described two patterns: add-on AI services, such as chatbots, whose failures don’t disrupt core workflows, and blocking-style AI components embedded in essential processes like fraud detection, where errors directly affect application function.
Rising cloud and ingestion costs further complicate telemetry strategies. Yackenovich cautioned against limiting visibility for budget reasons, advocating instead for predictable, fixed-price observability models that let organizations innovate without financial uncertainty.
Learn more from The New Stack about the latest in observability:
Observability 2.0? Or Just Logs All Over Again?
Building an Observability Culture: Getting Everyone Onboard
Join our community of newsletter subscribers to stay on top of the news and at the top of your game.
Hosted by Simplecast, an AdsWizz company. See pcm.adswizz.com for information about our collection and use of personal data for advertising.
910 episodes
Manage episode 520353490 series 75006
DevOps practitioners — whether developers, operators, SREs or business stakeholders — increasingly rely on telemetry to guide decisions, yet face growing complexity, siloed teams and rising observability costs. In a conversation at KubeCon + CloudNativeCon North America, IBM’s Jacob Yackenovich emphasized the importance of collecting high-granularity, full-capture data to avoid missing critical performance signals across hybrid application stacks that blend legacy and cloud-native components. He argued that observability must evolve to serve both technical and nontechnical users, enabling teams to focus on issues based on real business impact rather than subjective judgment.
AI’s rapid integration into applications introduces new observability challenges. Yackenovich described two patterns: add-on AI services, such as chatbots, whose failures don’t disrupt core workflows, and blocking-style AI components embedded in essential processes like fraud detection, where errors directly affect application function.
Rising cloud and ingestion costs further complicate telemetry strategies. Yackenovich cautioned against limiting visibility for budget reasons, advocating instead for predictable, fixed-price observability models that let organizations innovate without financial uncertainty.
Learn more from The New Stack about the latest in observability:
Observability 2.0? Or Just Logs All Over Again?
Building an Observability Culture: Getting Everyone Onboard
Join our community of newsletter subscribers to stay on top of the news and at the top of your game.
Hosted by Simplecast, an AdsWizz company. See pcm.adswizz.com for information about our collection and use of personal data for advertising.
910 episodes
All episodes
×Welcome to Player FM!
Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.