Search a title or topic

Over 20 million podcasts, powered by 

Player FM logo
Artwork

Content provided by HackerNoon. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by HackerNoon or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Here's How ShareChat Scaled Their ML Feature Store 1000X Without Scaling the Database

12:42
 
Share
 

Manage episode 508134211 series 3570694
Content provided by HackerNoon. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by HackerNoon or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/heres-how-sharechat-scaled-their-ml-feature-store-1000x-without-scaling-the-database.
How ShareChat scaled its ML feature store to 1B features/sec on ScyllaDB, achieving 1000X performance without scaling the database.
Check more stories related to data-science at: https://hackernoon.com/c/data-science. You can also check exclusive content about #sharechat-ml-feature-store, #scylladb-scaling-case-study, #ml-feature-store-optimization, #sharechat-moj, #low-latency-ml-infrastructure, #scylladb-database-optimization, #p99-conf-sharechat-talk, #good-company, and more.
This story was written by: @scylladb. Learn more about this writer by checking @scylladb's about page, and for more stories, please visit hackernoon.com.
ShareChat scaled its ML feature store from failure at 1M features/sec to 1B features/sec using ScyllaDB optimizations, caching hacks, and relentless tuning. By rethinking schemas, tiling, and caching strategies, engineers avoided scaling the database, cut latency, and boosted cache hit rates—proving performance engineering beats brute-force scaling.

  continue reading

2000 episodes

Artwork
iconShare
 
Manage episode 508134211 series 3570694
Content provided by HackerNoon. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by HackerNoon or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/heres-how-sharechat-scaled-their-ml-feature-store-1000x-without-scaling-the-database.
How ShareChat scaled its ML feature store to 1B features/sec on ScyllaDB, achieving 1000X performance without scaling the database.
Check more stories related to data-science at: https://hackernoon.com/c/data-science. You can also check exclusive content about #sharechat-ml-feature-store, #scylladb-scaling-case-study, #ml-feature-store-optimization, #sharechat-moj, #low-latency-ml-infrastructure, #scylladb-database-optimization, #p99-conf-sharechat-talk, #good-company, and more.
This story was written by: @scylladb. Learn more about this writer by checking @scylladb's about page, and for more stories, please visit hackernoon.com.
ShareChat scaled its ML feature store from failure at 1M features/sec to 1B features/sec using ScyllaDB optimizations, caching hacks, and relentless tuning. By rethinking schemas, tiling, and caching strategies, engineers avoided scaling the database, cut latency, and boosted cache hit rates—proving performance engineering beats brute-force scaling.

  continue reading

2000 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Copyright 2025 | Privacy Policy | Terms of Service | | Copyright
Listen to this show while you explore
Play