Search a title or topic

Over 20 million podcasts, powered by 

Player FM logo
Artwork

Content provided by Red Hat. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Red Hat or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Inside distributed inference with llm-d ft. Carlos Costa

26:23
 
Share
 

Manage episode 498555050 series 3668811
Content provided by Red Hat. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Red Hat or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.
Scaling LLM inference for production isn't just about adding more machines, it demands new intelligence in the infrastructure itself. In this episode, we're joined by Carlos Costa, Distinguished Engineer at IBM Research, a leader in large-scale compute and a key figure in the llm-d project. We discuss how to move beyond single-server deployments and build the intelligent, AI-aware infrastructure needed to manage complex workloads efficiently. Carlos Costa shares insights from his deep background in HPC and distributed systems, including: • The evolution from traditional HPC and large-scale training to the unique challenges of distributed inference for massive models. • The origin story of the llm-d project, a collaborative, open-source effort to create a much-needed ""common AI stack"" and control plane for the entire community. • How llm-d extends Kubernetes with the specialization required for AI, enabling state-aware scheduling that standard Kubernetes wasn't designed for. • Key architectural innovations like the disaggregation of prefill and decode stages and support for wide parallelism to efficiently run complex Mixture of Experts (MOE) models. Tune in to discover how this collaborative, open-source approach is building the standardized, AI-aware infrastructure necessary to make massive AI models practical, efficient, and accessible for everyone.
  continue reading

4 episodes

Artwork
iconShare
 
Manage episode 498555050 series 3668811
Content provided by Red Hat. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Red Hat or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.
Scaling LLM inference for production isn't just about adding more machines, it demands new intelligence in the infrastructure itself. In this episode, we're joined by Carlos Costa, Distinguished Engineer at IBM Research, a leader in large-scale compute and a key figure in the llm-d project. We discuss how to move beyond single-server deployments and build the intelligent, AI-aware infrastructure needed to manage complex workloads efficiently. Carlos Costa shares insights from his deep background in HPC and distributed systems, including: • The evolution from traditional HPC and large-scale training to the unique challenges of distributed inference for massive models. • The origin story of the llm-d project, a collaborative, open-source effort to create a much-needed ""common AI stack"" and control plane for the entire community. • How llm-d extends Kubernetes with the specialization required for AI, enabling state-aware scheduling that standard Kubernetes wasn't designed for. • Key architectural innovations like the disaggregation of prefill and decode stages and support for wide parallelism to efficiently run complex Mixture of Experts (MOE) models. Tune in to discover how this collaborative, open-source approach is building the standardized, AI-aware infrastructure necessary to make massive AI models practical, efficient, and accessible for everyone.
  continue reading

4 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Copyright 2025 | Privacy Policy | Terms of Service | | Copyright
Listen to this show while you explore
Play