Season 3 | Episode 17 - Understanding the Role of Language in Math Classrooms - Guest: William Zahner
Manage episode 481366982 series 3559066
How can educators understand the relationship between language and the mathematical concepts and skills students engage with in their classrooms?
And how might educators think about the mathematical demands and the language demands of tasks when planning their instruction?
In this episode, we discuss these questions with Bill Zahner, director of the Center for Research in Mathematics and Science Education at San Diego State University.
BIOGRAPHYBill Zahner is a professor in the mathematics department at San Diego State University and the director of the Center for Research in Mathematics and Science Education. Zahner's research is focused on improving mathematics learning for all students, especially multilingual students who are classified as English Learners and students from historically marginalized communities that are underrepresented in STEM fields.
RESOURCESNational Council of Teachers of Mathematics
Mathematics Teacher: Learning and Teaching PK– 12
English Learners Success Forum
SDSU-ELSF Video Cases for Professional Development
The Math Learning Center materials
Bridges in Mathematics curriculum
Bridges in Mathematics Teachers Guides [BES login required]
TRANSCRIPTMike Wallus: How can educators understand the way that language interacts with the mathematical concepts and skills their students are learning? And how can educators focus on the mathematics of a task without losing sight of its language demands as their planning for instruction? We'll examine these topics with our guest, Bill Zahner, director of the Center for Research in Mathematics and Science Education at San Diego State University.
Welcome to the podcast, Bill. Thank you for joining us today.
Bill Zahner: Oh, thanks. I'm glad to be here.
Mike: So, I'd like to start by asking you to address a few ideas that often surface in conversations around multilingual learners and mathematics. The first is the notion that math is universal, and it's detached from language. What, if anything, is wrong with this idea and what impact might an idea like that have on the ways that we try to support multilingual learners?
Bill: Yeah, thanks for that. That's a great question because I think we have a common-sense and strongly held idea that math is math no matter where you are and who you are. And of course, the example that's always given is something like 2 plus 2 equals 4, no matter who you are or where you are. And that is true, I guess [in] the sense that 2 plus 2 is 4, unless you're in base 3 or something. But that is not necessarily what mathematics in its fullness is. And when we think about what mathematics broadly is, mathematics is a way of thinking and a way of reasoning and a way of using various tools to make sense of the world or to engage with those tools [in] their own right. And oftentimes, that is deeply embedded with language.
Probably the most straightforward example is anytime I ask someone to justify or explain what they're thinking in mathematics. I'm immediately bringing in language into that case. And we all know the old funny examples where a kid is asked to show their thinking and they draw a diagram of themselves with a thought bubble on a math problem. And that's a really good case where I think a teacher can say, “OK, clearly that was not what I had in mind when I said, ‘Show your thinking.’”
And instead, the demand or the request was for a student to show their reasoning or their thought process, typically in words or in a combination of words and pictures and equations. And so, there's where I see this idea that math is detached from language is something of a myth; that there's actually a lot of [language in] mathematics. And the interesting part of mathematics is often deeply entwined with language. So, that's my first response and thought about that.
And if you look at our Common Core State Standards for Mathematics, especially those standards for mathematical practice, you see all sorts of connections to communication and to language interspersed throughout those standards. So, “create viable arguments,” that's a language practice. And even “attend to precision,” which most of us tend to think of as, “round appropriately.” But when you actually read the standard itself, it's really about mathematical communication and definitions and using those definitions with precision. So again, that's an example, bringing it right back into the school mathematics domain where language and mathematics are somewhat inseparable from my perspective here.
Mike: That's really helpful. So, the second idea that I often hear is, “The best way to support multilingual learners is by focusing on facts or procedures,” and that language comes later, for lack of a better way of saying it. And it seems like this is connected to that first notion, but I wanted to ask the question again: What, if anything, is wrong with this idea that a focus on facts or procedures with language coming after the fact? What impact do you suspect that that would have on the way that we support multilingual learners?
Bill: So, that's a great question, too, because there's a grain of truth, right? Both of these questions have simultaneously a grain of truth and simultaneously a fundamental problem in them. So, the grain of truth—and an experience that I've heard from many folks who learned mathematics in a second language—was that they felt more competent in mathematics than they did in say, a literature class, where the only activity was engaging with texts or engaging with words because there was a connection to the numbers and to symbols that were familiar. So, on one level, I think that this idea of focusing on facts or procedures comes out of this observation that sometimes an emergent multilingual student feels most comfortable in that context, in that setting.
But then the second part of the answer goes back to this first idea that really what we're trying to teach students in school mathematics now is not simply, or only, how to apply procedures to really big numbers or to know your times tables fast. I think we have a much more ambitious goal when it comes to teaching and learning mathematics. That includes explaining, justifying, modeling, using mathematics to analyze the world and so on. And so, those practices are deeply tied with language and deeply tied with using communication. And so, if we want to develop those, well, the best way to do that is to develop them, to think about, “What are the scaffolds? What are the supports that we need to integrate into our lessons or into our designs to make that possible?”
And so, that might be the takeaway there, is that if you simply look at mathematics as calculations, then this could be true. But I think our vision of mathematics is much broader than that, and that's where I see this potential.
Mike: That's really clarifying. I think the way that you unpack that is if you view mathematics as simply a set of procedures or calculations, maybe? But I would agree with you. What we want for students is actually so much more than that.
One of the things that I heard you say when we were preparing for this interview is that at the elementary level, learning mathematics is a deeply social endeavor. Tell us a little bit about what you mean by that, Bill.
Bill: Sure. So, mathematics itself, maybe as a premise, is a social activity. It's created by humans as a way of engaging with the world and a way of reasoning. So, the learning of mathematics is also social in the sense that we're giving students an introduction to this way of engaging in the world. Using numbers and quantities and shapes in order to make sense of our environment.
And when I think about learning mathematics, I think that we are not simply downloading knowledge and sticking it into our heads. And in the modern day where artificial intelligence and computers can do almost every calculation that we can imagine—although your AI may do it incorrectly, just as a fair warning [laughs]—but in the modern day, the actual answer is not what we're so focused on. It's actually the process and the reasoning and the modeling and justification of those choices.
And so, when I think about learning mathematics as learning to use these language tools, learning to use these ways of communication, how do we learn to communicate? We learn to communicate by engaging with other people, by engaging with the ideas and the minds and the feelings and so on of the folks around us, whether it's the teacher and the student, the student and the student, the whole class and the teacher. That's where I really see the power. And most of us who have learned, I think can attest to the fact that even when we're engaging with a text, really fundamentally we're engaging with something that was created by somebody else. So, fundamentally, even when you're sitting by yourself doing a math word problem or doing calculations, someone has given that to you and you think that that's important enough to do, right?
So, from that stance, I see all of teaching and learning mathematics is social. And maybe one of our goals in mathematics classrooms, beyond memorizing the times tables, is learning to communicate with other people, learning to be participants in this activity with other folks.
Mike: One of the things that strikes me about what you were saying, Bill, is there's this kind of virtuous cycle, right? That by engaging with language and having the social aspect of it, you're actually also deepening the opportunity for students to make sense of the math. You're building the scaffolds that help kids communicate their ideas as opposed to removing or stripping out the language. That's the context in some ways that helps them filter and make sense. You could either be in a vicious cycle, which comes from removing the language, or a virtuous cycle. And it seems a little counterintuitive because I think people perceive language as the thing that is holding kids back as opposed to the thing that might actually help them move forward and make sense.
Bill: Yeah. And actually that's one of the really interesting pieces that we've looked at in my research and the broader research is this question of, “What makes mathematics linguistically complex?” is a complicated question. And so sometimes we think of things like looking at the word count as a way to say, “If there are fewer words, it's less complex, and if there are more words, it's more complex.” But that's not totally true. And similarly, “If there's no context, it's easier or more accessible, and if there is a context, then it's less accessible.”
And I don't see these as binary choices. I see these as happening on a somewhat complicated terrain where we want to think about, “How do these words or these contexts add to student understanding or potentially impede [it]?” And that's where I think this social aspect of learning mathematics—as you described, it could be a virtuous cycle so that we can use language in order to engage in the process of learning language. Or, the vicious cycle is, you withhold all language and then get frustrated when students can't apply their mathematics. That’s maybe the most stereotypical answer: “My kids can do this, but as soon as they get a word problem, they can't do it.” And it's like, “Well, did you give them opportunities to learn how to do this? [laughs] Or is this the first time?” Because that would explain a lot.
Mike: Well, it's an interesting question, too, because I think what sits behind that in some ways is the idea that you're kind of going to reach a point, or students might reach a point, where they're “ready” for word problems.
Bill: Right.
Mike: And I think what we're really saying is it's actually through engaging with word problems that you build your proficiency, your skillset that actually allows you to become a stronger mathematician.
Bill: Mm-hmm. Right. Exactly. And it's a daily practice, right? It's not something that you just hold off to the end of the unit, and then you have the word problems, but it's part of the process of learning. And thinking about how you integrate and support that. That's the key question that I really wrestle with. Not trivial, but I think that's the key and the most important part of this.
Mike: Well, I think that's actually a really good segue because I wanted to shift and talk about some of the concrete or productive ways that educators can support multilingual learners. And in preparing for this conversation, one of the things that I've heard you stress is this notion of a consistent context. So, can you just talk a little bit more about what you mean by that and how educators can use that when they're looking at their lessons or when they're writing lessons or looking at the curriculum that they're using?
Bill: Absolutely. So, in our past work, we engaged in some cycles of design research with teachers looking at their mathematics curriculum and opportunities to engage multilingual learners in communication and reasoning in the classroom. And one of the surprising things that we found—just by looking at a couple of standard textbooks—was a surprising number of contexts were introduced that are all related to the same concept. So, the concept would be something like rate of change or ratio, and then the contexts, there would be a half dozen of them in the same section of the book. Now, this was, I should say, at a secondary level, so not quite where most of the Bridges work is happening. But I think it's an interesting lesson for us that we took away from this. Actually, at the elementary level, Kathryn Chval has made the same observation.
What we realized was that contexts are not good or bad by themselves. In fact, they can be highly supportive of student reasoning or they can get in the way. And it's how they are used and introduced. And so, the other way we thought about this was: When you introduce a context, you want to make sure that that context is one that you give sufficient time for the students to understand and to engage with; that is relatable, that everyone has access to it; not something that's just completely unrelated to students' experiences. And then you can really leverage that relatable, understandable context for multiple problems and iterations and opportunities to go deeper and deeper.
To give a concrete example of that, when we were looking at this ratio and rate of change, we went all the way back to one of the fundamental contexts that's been studied for a long time, which is motion and speed and distance and time. And that seemed like a really important topic because we know that that starts all the way back in elementary school and continues through college-level physics and beyond. So, it was a rich context. It was also something that was accessible in the sense that we could do things like act out story problems or reenact a race that's described in a story problem. And so, the students themselves had access to the context in a deep way.
And then, last, that context was one that we could come back to again and again, so we could do variations [of] that context on that story. And I think there's lots of examples of materials out there that start off with a core context and build it out. I’m thinking of some of the Bridges materials, even on the counting and the multiplication. I think there's stories of the insects and their legs and wings and counting and multiplying. And that's a really nice example of—it's accessible, you can go find insects almost anywhere you are. Kids like it. [Laughs] They enjoy thinking about insects and other icky, creepy-crawly things. And then you can take that and run with it in lots of different ways, right? Counting, multiplication, division ratio, and so on.
Mike: This last bit of our conversation has me thinking about what it might look like to plan a lesson for a class or a group of multilingual learners. And I know that it's important that I think about mathematical demands as well as the language demands of a given task. Can you unpack why it's important to set math and language development learning goals for a task, or a set of tasks, and what are the opportunities that come along with that, if I'm thinking about both of those things during my planning?
Bill: Yeah, that's a great question. And I want to mark the shift, right? We've gone from thinking about the demands to thinking about the goals, and where we're going to go next.
And so, when I think about integrating mathematical goals—mathematical learning goals and language learning goals—I often go back to these ideas that we call the practices, or these standards that are about how you engage in mathematics. And then I think about linking those back to the content itself. And so, there's kind of a two-piece element to that. And so, when we're setting our goals and lesson planning, at least here in the great state of California, sometimes we'll have these templates that have, “What standard are you addressing?,” [Laughs] “What language standard are you addressing?,” “What ELD standard are you addressing?,” “What SEL standard are you addressing?” And I've seen sometimes teachers approach that as a checkbox, right? Tick, tick, tick, tick, tick.
But I see that as a missed opportunity—if you just look at this like you're plugging things in—because as we started with talking about how learning mathematics is deeply social and integrated with language, that we can integrate the mathematical goals and the language goals in a lesson. And I think really good materials should be suggesting that to the teacher. You shouldn't be doing this yourself every day from scratch. But I think really high-quality materials will say, “Here's the mathematical goal, and here's an associated language goal,” whether it's productive or receptive functions of language. “And here's how the language goal connects the mathematical goal.”
Now, just to get really concrete, if we're talking about an example of reasoning with ratios—so I was going back to that—then it might be generalized, the relationship between distance and time. And that the ratio of distance and time gives you this quantity called speed, and that different combinations of distance and time can lead to the same speed. And so, explain and justify and show using words, pictures, diagrams. So, that would be a language goal, but it's also very much a mathematical goal.
And I guess I see the mathematical content, the practices, and the language really braided together in these goals. And that I think is the ideal, and at least from our work, has been most powerful and productive for students.
Mike: This is off script, but I'm going to ask it, and you can pass if you want to.
Bill: Mm-hmm.
Mike: I wonder if you could just share a little bit about what the impact of those [kinds] of practices that you described [have been]—have you seen what that impact looks like? Either for an educator who has made the step and is doing that integration or for students who are in a classroom where an educator is purposely thinking about that level of integration?
Bill: Yeah, I can talk a little bit about that. In our research, we have tried to measure the effects of some of these efforts. It is a difficult thing to measure because it's not just a simple true-false test question type of thing that you can give a multiple-choice test for.
But one of the ways that we've looked for the impact [of] these types of intentional designs is by looking at patterns of student participation in classroom discussions and seeing who is accessing the floor of the discussion and how. And then looking at other results, like giving an assessment, but deeper than looking at the outcome, the binary correct versus incorrect. Also looking at the quality of the explanation that's provided. So, how [do] you justify an answer? Does the student provide a deeper or a more mathematically complete explanation?
That is an area where I think more investigation is needed, and it's also very hard to vary systematically. So, from a research perspective—you may not want to put this into the final version [laughs]—but from a research perspective, it's very hard to fix and isolate these things because they are integrated.
Mike: Yeah. Yeah.
Bill: Because language and mathematics are so deeply integrated that trying to fix everything and do this—“What caused this water to taste like water? Was it the hydrogen or the oxygen?”—well, [laughs] you can't really pull those apart, right? The water molecule is hydrogen and oxygen together.
Mike: I think that's a lovely analogy for what we were talking about with mathematical goals and language goals. That, I think, is really a helpful way to think about the extent to which they're intertwined with one another.
Bill: Yeah, I need to give full credit to Vygotsky, I think, who said that.
Mike: You’re—
Bill: Something. Might be Vygotsky. I'll need to check my notes.
Mike: I think you're in good company if you're quoting Vygotsky.
Before we close, I'd love to just ask you a bit about resources. I say this often on the podcast. We have 20 to 25 minutes to dig deeply into an idea, and I know people who are listening often think about, “Where do I go from here?” Are there any particular resources that you would suggest for someone who wanted to continue learning about what it is to support multilingual learners in a math classroom?
Bill: Sure. Happy to share that.
So, I think on the individual and collective level—so, say, a group of teachers—there's a beautiful book by Kathryn Chval and her colleagues [Teaching Math to Multilingual Learners, Grades K–8] about supporting multilingual learners and mathematics. And I really see that as a valuable resource. I've used that in reading groups with teachers and used that in book studies, and it's been very productive and powerful for us. Beyond that, of course, I think the NCTM [National Council of Teachers of Mathematics] provides a number of really useful resources. And there are articles, for example, in the [NCTM journal] Mathematics Teacher: Learning and Teaching PK– 12 that could make for a really wonderful study or opportunity to engage more deeply.
And then I would say on a broader perspective, I've worked with organizations like the English Learners Success Forum and others. We've done some case studies and little classroom studies that are accessible on my website [SDSU-ELSF Video Cases for Professional Development], so you can go to that. But there's also from that organization some really valuable insights, if you're looking at adopting new materials or evaluating things, that gives you a principled set of guidelines to follow. And I think that's really helpful for educators because we don't have to do this all on our own. This is not a “reinvent the wheel at every single site” kind of situation. And so, I always encourage people to look for those resources.
And of course, I will say that the MLC materials, the Bridges in Mathematics [curriculum], I think have been really beautifully designed with a lot of these principles right behind them. So, for example, if you look through the Teachers Guides on the Bridges in Mathematics [BES login required], those integrated math and language and practice goals are a part of the design.
Mike: Well, I think that's a great place to stop. Thank you so much for joining us, Bill. This has been insightful, and it's really been a pleasure talking with you.
Bill: Oh, well, thank you. I appreciate it.
Mike: And that's a wrap for Season 3 of Rounding Up. I want to thank all of our guests and the MLC staff who make these podcasts possible, as well as all of our listeners for tuning in. Have a great summer, and we'll be back in September for Season 4.
This podcast is brought to you by The Math Learning Center and the Maier Math Foundation, dedicated to inspiring and enabling all individuals to discover and develop their mathematical confidence and ability.
© 2025 The Math Learning Center | www.mathlearningcenter.org
56 episodes