Understanding Deep Neural Networks
MP3•Episode home
Manage episode 241933821 series 1427720
Content provided by O'Reilly Radar. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by O'Reilly Radar or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.
In this episode of the Data Show, I speak with Michael Mahoney, a member of RISELab, the International Computer Science Institute, and the Department of Statistics at UC Berkeley. A physicist by training, Mahoney has been at the forefront of many important problems in large-scale data analysis. On the theoretical side, his works spans algorithmic and statistical methods for matrices, graphs, regression, optimization, and related problems. On the applications side, he has contributed to systems used for internet and social media analysis, social network analysis, as well as for a host of applications in the physical and life sciences. Most recently, he has been working on deep neural networks, specifically developing theoretical methods and practical diagnostic tools that should be helpful to practitioners who use deep learning.
…
continue reading
443 episodes