Go offline with the Player FM app!
Episode 9: Nanocomposite-superlattice enables low energy, high stability phase-change memory device
Manage episode 408940536 series 2602554
In this podcast episode, MRS Bulletin’s Laura Leay interviews Eric Pop, Xiangjin Wu, and Asir Intisar Khan from Stanford University about their work building a phase-change memory superlattice at the nanoscale. They created the superlattice by alternating layers of antimony-tellurium nanoclusters with a nanocomposite made from germanium, antimony, and tellurium (GST467). Each layer is ~2 nm thick and the superlattice consists of 15 periods of these alternating layers. The microstructural properties of GST467 and its high crystallization temperature facilitate both faster switching speed and improved stability. The device operates at low voltage and shows promise for high-density multi-level data storage. This work was published in a recent issue of Nature Communications.
125 episodes
Manage episode 408940536 series 2602554
In this podcast episode, MRS Bulletin’s Laura Leay interviews Eric Pop, Xiangjin Wu, and Asir Intisar Khan from Stanford University about their work building a phase-change memory superlattice at the nanoscale. They created the superlattice by alternating layers of antimony-tellurium nanoclusters with a nanocomposite made from germanium, antimony, and tellurium (GST467). Each layer is ~2 nm thick and the superlattice consists of 15 periods of these alternating layers. The microstructural properties of GST467 and its high crystallization temperature facilitate both faster switching speed and improved stability. The device operates at low voltage and shows promise for high-density multi-level data storage. This work was published in a recent issue of Nature Communications.
125 episodes
All episodes
×Welcome to Player FM!
Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.