Search a title or topic

Over 20 million podcasts, powered by 

Player FM logo
Artwork

Content provided by Machine Learning Street Talk (MLST). All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Machine Learning Street Talk (MLST) or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

New top score on ARC-AGI-2-pub (29.4%) - Jeremy Berman

1:08:27
 
Share
 

Manage episode 508765959 series 2803422
Content provided by Machine Learning Street Talk (MLST). All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Machine Learning Street Talk (MLST) or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.

We need AI systems to synthesise new knowledge, not just compress the data they see. Jeremy Berman, is a research scientist at Reflection AI and recent winner of the ARC-AGI v2 public leaderboard.**SPONSOR MESSAGES**—Take the Prolific human data survey - https://www.prolific.com/humandatasurvey?utm_source=mlst and be the first to see the results and benchmark their practices against the wider community!—cyber•Fund https://cyber.fund/?utm_source=mlst is a founder-led investment firm accelerating the cybernetic economyOct SF conference - https://dagihouse.com/?utm_source=mlst - Joscha Bach keynoting(!) + OAI, Anthropic, NVDA,++Hiring a SF VC Principal: https://talent.cyber.fund/companies/cyber-fund-2/jobs/57674170-ai-investment-principal#content?utm_source=mlstSubmit investment deck: https://cyber.fund/contact?utm_source=mlst— Imagine trying to teach an AI to think like a human i.e. solving puzzles that are easy for us but stump even the smartest models. Jeremy's evolutionary approach—evolving natural language descriptions instead of python code like his last version—landed him at the top with about 30% accuracy on the ARCv2.We discuss why current AIs are like "stochastic parrots" that memorize but struggle to truly reason or innovate as well as big ideas like building "knowledge trees" for real understanding, the limits of neural networks versus symbolic systems, and whether we can train models to synthesize new ideas without forgetting everything else. Jeremy Berman:https://x.com/jerber888TRANSCRIPT:https://app.rescript.info/public/share/qvCioZeZJ4Q_NlR66m-hNUZnh-qWlUJcS15Wc2OGwD0TOC:Introduction and Overview [00:00:00]ARC v1 Solution [00:07:20]Evolutionary Python Approach [00:08:00]Trade-offs in Depth vs. Breadth [00:10:33]ARC v2 Improvements [00:11:45]Natural Language Shift [00:12:35]Model Thinking Enhancements [00:13:05]Neural Networks vs. Symbolism Debate [00:14:24]Turing Completeness Discussion [00:15:24]Continual Learning Challenges [00:19:12]Reasoning and Intelligence [00:29:33]Knowledge Trees and Synthesis [00:50:15]Creativity and Invention [00:56:41]Future Directions and Closing [01:02:30]REFS:Jeremy’s 2024 article on winning ARCAGI1-pubhttps://jeremyberman.substack.com/p/how-i-got-a-record-536-on-arc-agiGetting 50% (SoTA) on ARC-AGI with GPT-4o [Greenblatt]https://blog.redwoodresearch.org/p/getting-50-sota-on-arc-agi-with-gpt https://www.youtube.com/watch?v=z9j3wB1RRGA [his MLST interview]A Thousand Brains: A New Theory of Intelligence [Hawkins]https://www.amazon.com/Thousand-Brains-New-Theory-Intelligence/dp/1541675819https://www.youtube.com/watch?v=6VQILbDqaI4 [MLST interview]Francois Chollet + Mike Knoop’s labhttps://ndea.com/On the Measure of Intelligence [Chollet]https://arxiv.org/abs/1911.01547On the Biology of a Large Language Model [Anthropic]https://transformer-circuits.pub/2025/attribution-graphs/biology.html The ARChitects [won 2024 ARC-AGI-1-private]https://www.youtube.com/watch?v=mTX_sAq--zY Connectionism critique 1998 [Fodor/Pylshyn]https://uh.edu/~garson/F&P1.PDF Questioning Representational Optimism in Deep Learning: The Fractured Entangled Representation Hypothesis [Kumar/Stanley]https://arxiv.org/pdf/2505.11581 AlphaEvolve interview (also program synthesis)https://www.youtube.com/watch?v=vC9nAosXrJw ShinkaEvolve: Evolving New Algorithms with LLMs, Orders of Magnitude More Efficiently [Lange et al]https://sakana.ai/shinka-evolve/ Deep learning with Python Rev 3 [Chollet] - READ CHAPTER 19 NOW!https://deeplearningwithpython.io/

  continue reading

233 episodes

Artwork
iconShare
 
Manage episode 508765959 series 2803422
Content provided by Machine Learning Street Talk (MLST). All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Machine Learning Street Talk (MLST) or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.

We need AI systems to synthesise new knowledge, not just compress the data they see. Jeremy Berman, is a research scientist at Reflection AI and recent winner of the ARC-AGI v2 public leaderboard.**SPONSOR MESSAGES**—Take the Prolific human data survey - https://www.prolific.com/humandatasurvey?utm_source=mlst and be the first to see the results and benchmark their practices against the wider community!—cyber•Fund https://cyber.fund/?utm_source=mlst is a founder-led investment firm accelerating the cybernetic economyOct SF conference - https://dagihouse.com/?utm_source=mlst - Joscha Bach keynoting(!) + OAI, Anthropic, NVDA,++Hiring a SF VC Principal: https://talent.cyber.fund/companies/cyber-fund-2/jobs/57674170-ai-investment-principal#content?utm_source=mlstSubmit investment deck: https://cyber.fund/contact?utm_source=mlst— Imagine trying to teach an AI to think like a human i.e. solving puzzles that are easy for us but stump even the smartest models. Jeremy's evolutionary approach—evolving natural language descriptions instead of python code like his last version—landed him at the top with about 30% accuracy on the ARCv2.We discuss why current AIs are like "stochastic parrots" that memorize but struggle to truly reason or innovate as well as big ideas like building "knowledge trees" for real understanding, the limits of neural networks versus symbolic systems, and whether we can train models to synthesize new ideas without forgetting everything else. Jeremy Berman:https://x.com/jerber888TRANSCRIPT:https://app.rescript.info/public/share/qvCioZeZJ4Q_NlR66m-hNUZnh-qWlUJcS15Wc2OGwD0TOC:Introduction and Overview [00:00:00]ARC v1 Solution [00:07:20]Evolutionary Python Approach [00:08:00]Trade-offs in Depth vs. Breadth [00:10:33]ARC v2 Improvements [00:11:45]Natural Language Shift [00:12:35]Model Thinking Enhancements [00:13:05]Neural Networks vs. Symbolism Debate [00:14:24]Turing Completeness Discussion [00:15:24]Continual Learning Challenges [00:19:12]Reasoning and Intelligence [00:29:33]Knowledge Trees and Synthesis [00:50:15]Creativity and Invention [00:56:41]Future Directions and Closing [01:02:30]REFS:Jeremy’s 2024 article on winning ARCAGI1-pubhttps://jeremyberman.substack.com/p/how-i-got-a-record-536-on-arc-agiGetting 50% (SoTA) on ARC-AGI with GPT-4o [Greenblatt]https://blog.redwoodresearch.org/p/getting-50-sota-on-arc-agi-with-gpt https://www.youtube.com/watch?v=z9j3wB1RRGA [his MLST interview]A Thousand Brains: A New Theory of Intelligence [Hawkins]https://www.amazon.com/Thousand-Brains-New-Theory-Intelligence/dp/1541675819https://www.youtube.com/watch?v=6VQILbDqaI4 [MLST interview]Francois Chollet + Mike Knoop’s labhttps://ndea.com/On the Measure of Intelligence [Chollet]https://arxiv.org/abs/1911.01547On the Biology of a Large Language Model [Anthropic]https://transformer-circuits.pub/2025/attribution-graphs/biology.html The ARChitects [won 2024 ARC-AGI-1-private]https://www.youtube.com/watch?v=mTX_sAq--zY Connectionism critique 1998 [Fodor/Pylshyn]https://uh.edu/~garson/F&P1.PDF Questioning Representational Optimism in Deep Learning: The Fractured Entangled Representation Hypothesis [Kumar/Stanley]https://arxiv.org/pdf/2505.11581 AlphaEvolve interview (also program synthesis)https://www.youtube.com/watch?v=vC9nAosXrJw ShinkaEvolve: Evolving New Algorithms with LLMs, Orders of Magnitude More Efficiently [Lange et al]https://sakana.ai/shinka-evolve/ Deep learning with Python Rev 3 [Chollet] - READ CHAPTER 19 NOW!https://deeplearningwithpython.io/

  continue reading

233 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Copyright 2025 | Privacy Policy | Terms of Service | | Copyright
Listen to this show while you explore
Play