Search a title or topic

Over 20 million podcasts, powered by 

Player FM logo
Artwork

Content provided by Machine Learning Street Talk (MLST). All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Machine Learning Street Talk (MLST) or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

How Do AI Models Actually Think? - Laura Ruis

1:18:01
 
Share
 

Manage episode 462004737 series 2803422
Content provided by Machine Learning Street Talk (MLST). All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Machine Learning Street Talk (MLST) or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.

Laura Ruis, a PhD student at University College London and researcher at Cohere, explains her groundbreaking research into how large language models (LLMs) perform reasoning tasks, the fundamental mechanisms underlying LLM reasoning capabilities, and whether these models primarily rely on retrieval or develop procedural knowledge.

SPONSOR MESSAGES:

***

CentML offers competitive pricing for GenAI model deployment, with flexible options to suit a wide range of models, from small to large-scale deployments.

https://centml.ai/pricing/

Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on o-series style reasoning and AGI. Are you interested in working on reasoning, or getting involved in their events?

Goto https://tufalabs.ai/

***

TOC

1. LLM Foundations and Learning

1.1 Scale and Learning in Language Models [00:00:00]

1.2 Procedural Knowledge vs Fact Retrieval [00:03:40]

1.3 Influence Functions and Model Analysis [00:07:40]

1.4 Role of Code in LLM Reasoning [00:11:10]

1.5 Semantic Understanding and Physical Grounding [00:19:30]

2. Reasoning Architectures and Measurement

2.1 Measuring Understanding and Reasoning in Language Models [00:23:10]

2.2 Formal vs Approximate Reasoning and Model Creativity [00:26:40]

2.3 Symbolic vs Subsymbolic Computation Debate [00:34:10]

2.4 Neural Network Architectures and Tensor Product Representations [00:40:50]

3. AI Agency and Risk Assessment

3.1 Agency and Goal-Directed Behavior in Language Models [00:45:10]

3.2 Defining and Measuring Agency in AI Systems [00:49:50]

3.3 Core Knowledge Systems and Agency Detection [00:54:40]

3.4 Language Models as Agent Models and Simulator Theory [01:03:20]

3.5 AI Safety and Societal Control Mechanisms [01:07:10]

3.6 Evolution of AI Capabilities and Emergent Risks [01:14:20]

REFS:

[00:01:10] Procedural Knowledge in Pretraining & LLM Reasoning

Ruis et al., 2024

https://arxiv.org/abs/2411.12580

[00:03:50] EK-FAC Influence Functions in Large LMs

Grosse et al., 2023

https://arxiv.org/abs/2308.03296

[00:13:05] Surfaces and Essences: Analogy as the Core of Cognition

Hofstadter & Sander

https://www.amazon.com/Surfaces-Essences-Analogy-Fuel-Thinking/dp/0465018475

[00:13:45] Wittgenstein on Language Games

https://plato.stanford.edu/entries/wittgenstein/

[00:14:30] Montague Semantics for Natural Language

https://plato.stanford.edu/entries/montague-semantics/

[00:19:35] The Chinese Room Argument

David Cole

https://plato.stanford.edu/entries/chinese-room/

[00:19:55] ARC: Abstraction and Reasoning Corpus

François Chollet

https://arxiv.org/abs/1911.01547

[00:24:20] Systematic Generalization in Neural Nets

Lake & Baroni, 2023

https://www.nature.com/articles/s41586-023-06668-3

[00:27:40] Open-Endedness & Creativity in AI

Tim Rocktäschel

https://arxiv.org/html/2406.04268v1

[00:30:50] Fodor & Pylyshyn on Connectionism

https://www.sciencedirect.com/science/article/abs/pii/0010027788900315

[00:31:30] Tensor Product Representations

Smolensky, 1990

https://www.sciencedirect.com/science/article/abs/pii/000437029090007M

[00:35:50] DreamCoder: Wake-Sleep Program Synthesis

Kevin Ellis et al.

https://courses.cs.washington.edu/courses/cse599j1/22sp/papers/dreamcoder.pdf

[00:36:30] Compositional Generalization Benchmarks

Ruis, Lake et al., 2022

https://arxiv.org/pdf/2202.10745

[00:40:30] RNNs & Tensor Products

McCoy et al., 2018

https://arxiv.org/abs/1812.08718

[00:46:10] Formal Causal Definition of Agency

Kenton et al.

https://arxiv.org/pdf/2208.08345v2

[00:48:40] Agency in Language Models

Sumers et al.

https://arxiv.org/abs/2309.02427

[00:55:20] Heider & Simmel’s Moving Shapes Experiment

https://www.nature.com/articles/s41598-024-65532-0

[01:00:40] Language Models as Agent Models

Jacob Andreas, 2022

https://arxiv.org/abs/2212.01681

[01:13:35] Pragmatic Understanding in LLMs

Ruis et al.

https://arxiv.org/abs/2210.14986

  continue reading

217 episodes

Artwork
iconShare
 
Manage episode 462004737 series 2803422
Content provided by Machine Learning Street Talk (MLST). All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Machine Learning Street Talk (MLST) or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.

Laura Ruis, a PhD student at University College London and researcher at Cohere, explains her groundbreaking research into how large language models (LLMs) perform reasoning tasks, the fundamental mechanisms underlying LLM reasoning capabilities, and whether these models primarily rely on retrieval or develop procedural knowledge.

SPONSOR MESSAGES:

***

CentML offers competitive pricing for GenAI model deployment, with flexible options to suit a wide range of models, from small to large-scale deployments.

https://centml.ai/pricing/

Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on o-series style reasoning and AGI. Are you interested in working on reasoning, or getting involved in their events?

Goto https://tufalabs.ai/

***

TOC

1. LLM Foundations and Learning

1.1 Scale and Learning in Language Models [00:00:00]

1.2 Procedural Knowledge vs Fact Retrieval [00:03:40]

1.3 Influence Functions and Model Analysis [00:07:40]

1.4 Role of Code in LLM Reasoning [00:11:10]

1.5 Semantic Understanding and Physical Grounding [00:19:30]

2. Reasoning Architectures and Measurement

2.1 Measuring Understanding and Reasoning in Language Models [00:23:10]

2.2 Formal vs Approximate Reasoning and Model Creativity [00:26:40]

2.3 Symbolic vs Subsymbolic Computation Debate [00:34:10]

2.4 Neural Network Architectures and Tensor Product Representations [00:40:50]

3. AI Agency and Risk Assessment

3.1 Agency and Goal-Directed Behavior in Language Models [00:45:10]

3.2 Defining and Measuring Agency in AI Systems [00:49:50]

3.3 Core Knowledge Systems and Agency Detection [00:54:40]

3.4 Language Models as Agent Models and Simulator Theory [01:03:20]

3.5 AI Safety and Societal Control Mechanisms [01:07:10]

3.6 Evolution of AI Capabilities and Emergent Risks [01:14:20]

REFS:

[00:01:10] Procedural Knowledge in Pretraining & LLM Reasoning

Ruis et al., 2024

https://arxiv.org/abs/2411.12580

[00:03:50] EK-FAC Influence Functions in Large LMs

Grosse et al., 2023

https://arxiv.org/abs/2308.03296

[00:13:05] Surfaces and Essences: Analogy as the Core of Cognition

Hofstadter & Sander

https://www.amazon.com/Surfaces-Essences-Analogy-Fuel-Thinking/dp/0465018475

[00:13:45] Wittgenstein on Language Games

https://plato.stanford.edu/entries/wittgenstein/

[00:14:30] Montague Semantics for Natural Language

https://plato.stanford.edu/entries/montague-semantics/

[00:19:35] The Chinese Room Argument

David Cole

https://plato.stanford.edu/entries/chinese-room/

[00:19:55] ARC: Abstraction and Reasoning Corpus

François Chollet

https://arxiv.org/abs/1911.01547

[00:24:20] Systematic Generalization in Neural Nets

Lake & Baroni, 2023

https://www.nature.com/articles/s41586-023-06668-3

[00:27:40] Open-Endedness & Creativity in AI

Tim Rocktäschel

https://arxiv.org/html/2406.04268v1

[00:30:50] Fodor & Pylyshyn on Connectionism

https://www.sciencedirect.com/science/article/abs/pii/0010027788900315

[00:31:30] Tensor Product Representations

Smolensky, 1990

https://www.sciencedirect.com/science/article/abs/pii/000437029090007M

[00:35:50] DreamCoder: Wake-Sleep Program Synthesis

Kevin Ellis et al.

https://courses.cs.washington.edu/courses/cse599j1/22sp/papers/dreamcoder.pdf

[00:36:30] Compositional Generalization Benchmarks

Ruis, Lake et al., 2022

https://arxiv.org/pdf/2202.10745

[00:40:30] RNNs & Tensor Products

McCoy et al., 2018

https://arxiv.org/abs/1812.08718

[00:46:10] Formal Causal Definition of Agency

Kenton et al.

https://arxiv.org/pdf/2208.08345v2

[00:48:40] Agency in Language Models

Sumers et al.

https://arxiv.org/abs/2309.02427

[00:55:20] Heider & Simmel’s Moving Shapes Experiment

https://www.nature.com/articles/s41598-024-65532-0

[01:00:40] Language Models as Agent Models

Jacob Andreas, 2022

https://arxiv.org/abs/2212.01681

[01:13:35] Pragmatic Understanding in LLMs

Ruis et al.

https://arxiv.org/abs/2210.14986

  continue reading

217 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Listen to this show while you explore
Play