Hanselminutes is Fresh Air for Developers. A weekly commute-time podcast that promotes fresh technology and fresh voices. Talk and Tech for Developers, Life-long Learners, and Technologists.
…
continue reading
Content provided by Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.
Player FM - Podcast App
Go offline with the Player FM app!
Go offline with the Player FM app!
Data scientists: beware of simple metrics
MP3•Episode home
Manage episode 249556287 series 74115
Content provided by Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.
Picking a metric for a problem means defining how you’ll measure success in solving that problem. Which sounds important, because it is, but oftentimes new data scientists only get experience with a few kinds of metrics when they’re learning and those metrics have real shortcomings when you think about what they tell you, or don’t, about how well you’re really solving the underlying problem. This episode takes a step back and says, what are some metrics that are popular with data scientists, why are they popular, and what are their shortcomings when it comes to the real world? There’s been a lot of great thinking and writing recently on this topic, and we cover a lot of that discussion along with some perspective of our own. Relevant links: https://www.fast.ai/2019/09/24/metrics/ https://arxiv.org/abs/1909.12475 https://medium.com/shoprunner/evaluating-classification-models-1-ff0730801f17 https://hbr.org/2019/09/dont-let-metrics-undermine-your-business
…
continue reading
293 episodes
MP3•Episode home
Manage episode 249556287 series 74115
Content provided by Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.
Picking a metric for a problem means defining how you’ll measure success in solving that problem. Which sounds important, because it is, but oftentimes new data scientists only get experience with a few kinds of metrics when they’re learning and those metrics have real shortcomings when you think about what they tell you, or don’t, about how well you’re really solving the underlying problem. This episode takes a step back and says, what are some metrics that are popular with data scientists, why are they popular, and what are their shortcomings when it comes to the real world? There’s been a lot of great thinking and writing recently on this topic, and we cover a lot of that discussion along with some perspective of our own. Relevant links: https://www.fast.ai/2019/09/24/metrics/ https://arxiv.org/abs/1909.12475 https://medium.com/shoprunner/evaluating-classification-models-1-ff0730801f17 https://hbr.org/2019/09/dont-let-metrics-undermine-your-business
…
continue reading
293 episodes
すべてのエピソード
×Welcome to Player FM!
Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.