Talk Python to Me is a weekly podcast hosted by developer and entrepreneur Michael Kennedy. We dive deep into the popular packages and software developers, data scientists, and incredible hobbyists doing amazing things with Python. If you're new to Python, you'll quickly learn the ins and outs of the community by hearing from the leaders. And if you've been Pythoning for years, you'll learn about your favorite packages and the hot new ones coming out of open source.
…
continue reading
Content provided by Linear Digressions, Ben Jaffe, and Katie Malone. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Linear Digressions, Ben Jaffe, and Katie Malone or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.
Player FM - Podcast App
Go offline with the Player FM app!
Go offline with the Player FM app!
Gaussian Processes
MP3•Episode home
Manage episode 259975187 series 2527355
Content provided by Linear Digressions, Ben Jaffe, and Katie Malone. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Linear Digressions, Ben Jaffe, and Katie Malone or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.
It’s pretty common to fit a function to a dataset when you’re a data scientist. But in many cases, it’s not clear what kind of function might be most appropriate—linear? quadratic? sinusoidal? some combination of these, and perhaps others? Gaussian processes introduce a nonparameteric option where you can fit over all the possible types of functions, using the data points in your datasets as constraints on the results that you get (the idea being that, no matter what the “true” underlying function is, it produced the data points you’re trying to fit). What this means is a very flexible, but depending on your parameters not-too-flexible, way to fit complex datasets. The math underlying GPs gets complex, and the links below contain some excellent visualizations that help make the underlying concepts clearer. Check them out! Relevant links: http://katbailey.github.io/post/gaussian-processes-for-dummies/ https://thegradient.pub/gaussian-process-not-quite-for-dummies/ https://distill.pub/2019/visual-exploration-gaussian-processes/
…
continue reading
291 episodes
MP3•Episode home
Manage episode 259975187 series 2527355
Content provided by Linear Digressions, Ben Jaffe, and Katie Malone. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Linear Digressions, Ben Jaffe, and Katie Malone or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.
It’s pretty common to fit a function to a dataset when you’re a data scientist. But in many cases, it’s not clear what kind of function might be most appropriate—linear? quadratic? sinusoidal? some combination of these, and perhaps others? Gaussian processes introduce a nonparameteric option where you can fit over all the possible types of functions, using the data points in your datasets as constraints on the results that you get (the idea being that, no matter what the “true” underlying function is, it produced the data points you’re trying to fit). What this means is a very flexible, but depending on your parameters not-too-flexible, way to fit complex datasets. The math underlying GPs gets complex, and the links below contain some excellent visualizations that help make the underlying concepts clearer. Check them out! Relevant links: http://katbailey.github.io/post/gaussian-processes-for-dummies/ https://thegradient.pub/gaussian-process-not-quite-for-dummies/ https://distill.pub/2019/visual-exploration-gaussian-processes/
…
continue reading
291 episodes
All episodes
×Welcome to Player FM!
Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.