Go offline with the Player FM app!
The Locally Nameless Representation
Manage episode 459048862 series 2823367
I discuss what is called the locally nameless representation of syntax with binders, following the first couple of sections of the very nicely written paper "The Locally Nameless Representation," by Charguéraud. I complain due to the statement in the paper that "the theory of λ-calculus identifies terms that are α-equivalent," which is simply not true if one is considering lambda calculus as defined by Church, where renaming is an explicit reduction step, on a par with beta-reduction. I also answer a listener's question about what "computational type theory" means.
Feel free to email me any time at [email protected], or join the Telegram group for the podcast.
173 episodes
Manage episode 459048862 series 2823367
I discuss what is called the locally nameless representation of syntax with binders, following the first couple of sections of the very nicely written paper "The Locally Nameless Representation," by Charguéraud. I complain due to the statement in the paper that "the theory of λ-calculus identifies terms that are α-equivalent," which is simply not true if one is considering lambda calculus as defined by Church, where renaming is an explicit reduction step, on a par with beta-reduction. I also answer a listener's question about what "computational type theory" means.
Feel free to email me any time at [email protected], or join the Telegram group for the podcast.
173 episodes
Alla avsnitt
×Welcome to Player FM!
Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.