Search a title or topic

Over 20 million podcasts, powered by 

Player FM logo
Artwork

Content provided by Mike Breault. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Mike Breault or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.
Player FM - Podcast App
Go offline with the Player FM app!

The Gudermannian Bridge: From Maps to Machines

4:28
 
Share
 

Manage episode 509002584 series 3690682
Content provided by Mike Breault. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Mike Breault or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.
We journey through the Gudermannian (often called Gutermannian) function, the elegant link that ties circular angles to hyperbolic angles without complex numbers. We explore how its antiderivative is the hyperbolic secant, while its inverse comes from the circular secant, and why this makes the function a natural bridge between two geometries. We'll trace its history—from Lambert’s transcendent angle to Mercator’s meridional part and the stereographic projection that underpins map projections—uncovering simple identities like tan(phi/2) = tanh(psi/2) and why they matter. Beyond theory, we see how this ancient idea surfaces in modern tech and science: as a sigmoid-like activation in neural networks and as a model for spiral galaxy arms. Finally, we reflect on how centuries-old math quietly underpins today’s AI and astrophysical models, inviting us to look for other hidden connections in the tools we rely on.

Note: This podcast was AI-generated, and sometimes AI can make mistakes. Please double-check any critical information.

Sponsored by Embersilk LLC

  continue reading

1321 episodes

Artwork
iconShare
 
Manage episode 509002584 series 3690682
Content provided by Mike Breault. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Mike Breault or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.
We journey through the Gudermannian (often called Gutermannian) function, the elegant link that ties circular angles to hyperbolic angles without complex numbers. We explore how its antiderivative is the hyperbolic secant, while its inverse comes from the circular secant, and why this makes the function a natural bridge between two geometries. We'll trace its history—from Lambert’s transcendent angle to Mercator’s meridional part and the stereographic projection that underpins map projections—uncovering simple identities like tan(phi/2) = tanh(psi/2) and why they matter. Beyond theory, we see how this ancient idea surfaces in modern tech and science: as a sigmoid-like activation in neural networks and as a model for spiral galaxy arms. Finally, we reflect on how centuries-old math quietly underpins today’s AI and astrophysical models, inviting us to look for other hidden connections in the tools we rely on.

Note: This podcast was AI-generated, and sometimes AI can make mistakes. Please double-check any critical information.

Sponsored by Embersilk LLC

  continue reading

1321 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Copyright 2025 | Privacy Policy | Terms of Service | | Copyright
Listen to this show while you explore
Play