Search a title or topic

Over 20 million podcasts, powered by 

Player FM logo
Artwork

Content provided by Kanjun Qiu. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Kanjun Qiu or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Episode 30: Ben Eysenbach, CMU, on designing simpler and more principled RL algorithms

1:45:56
 
Share
 

Manage episode 359320493 series 2906499
Content provided by Kanjun Qiu. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Kanjun Qiu or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.

Ben Eysenbach is a PhD student from CMU and a student researcher at Google Brain. He is co-advised by Sergey Levine and Ruslan Salakhutdinov and his research focuses on developing RL algorithms that get state-of-the-art performance while being more simple, scalable, and robust. Recent problems he’s tackled include long horizon reasoning, exploration, and representation learning. In this episode, we discuss designing simpler and more principled RL algorithms, and much more.

About Generally Intelligent

We started Generally Intelligent because we believe that software with human-level intelligence will have a transformative impact on the world. We’re dedicated to ensuring that that impact is a positive one.

We have enough funding to freely pursue our research goals over the next decade, and our backers include Y Combinator, researchers from OpenAI, Astera Institute, and a number of private individuals who care about effective altruism and scientific research.

Our research is focused on agents for digital environments (ex: browser, desktop, documents), using RL, large language models, and self supervised learning. We’re excited about opportunities to use simulated data, network architecture search, and good theoretical understanding of deep learning to make progress on these problems. We take a focused, engineering-driven approach to research.

Learn more about us

Website: https://generallyintelligent.com/

LinkedIn: linkedin.com/company/generallyintelligent/

Twitter: @genintelligent

  continue reading

37 episodes

Artwork
iconShare
 
Manage episode 359320493 series 2906499
Content provided by Kanjun Qiu. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Kanjun Qiu or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.

Ben Eysenbach is a PhD student from CMU and a student researcher at Google Brain. He is co-advised by Sergey Levine and Ruslan Salakhutdinov and his research focuses on developing RL algorithms that get state-of-the-art performance while being more simple, scalable, and robust. Recent problems he’s tackled include long horizon reasoning, exploration, and representation learning. In this episode, we discuss designing simpler and more principled RL algorithms, and much more.

About Generally Intelligent

We started Generally Intelligent because we believe that software with human-level intelligence will have a transformative impact on the world. We’re dedicated to ensuring that that impact is a positive one.

We have enough funding to freely pursue our research goals over the next decade, and our backers include Y Combinator, researchers from OpenAI, Astera Institute, and a number of private individuals who care about effective altruism and scientific research.

Our research is focused on agents for digital environments (ex: browser, desktop, documents), using RL, large language models, and self supervised learning. We’re excited about opportunities to use simulated data, network architecture search, and good theoretical understanding of deep learning to make progress on these problems. We take a focused, engineering-driven approach to research.

Learn more about us

Website: https://generallyintelligent.com/

LinkedIn: linkedin.com/company/generallyintelligent/

Twitter: @genintelligent

  continue reading

37 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Listen to this show while you explore
Play