Search a title or topic

Over 20 million podcasts, powered by 

Player FM logo
Artwork

Content provided by kathrynj2. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by kathrynj2 or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Synthetic Data and Hedge Fund Replication

18:39
 
Share
 

Manage episode 493739142 series 3655012
Content provided by kathrynj2. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by kathrynj2 or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.

This episode explores and academic paper on the replication of hedge fund strategies using publicly available data and machine learning techniques, specifically autoencoders for dimension reduction and Generative Adversarial Networks (GANs) for synthesizing additional data. The author aims to demonstrate that such replicated portfolios can outperform traditional hedge fund returns after accounting for fees and transaction costs, thereby questioning the efficiency of current hedge fund performance. The research systematically evaluates different replication methodologies ultimately highlighting the superior performance and lower turnover achieved by the autoencoder-based strategies, especially when augmented with synthetically generated data. It presents a new way to benchmark hedge fund performance and potentially offers investors a more efficient alternative to direct hedge fund investment.

References

Shen, Kaiwen, Do You Really Need to Pay 2/20? Hedge Fund Strategy Replication via Machine Learning (October 10, 2022). Available at SSRN: https://ssrn.com/abstract=4243861 or http://dx.doi.org/10.2139/ssrn.4243861

Podcast Disclaimer

This podcast is an independent production and is not affiliated with or endorsed by any third-party entities unless explicitly stated. The content is for educational and informational purposes only and does not constitute financial, investment, legal, or professional advice. Listeners should consult qualified professionals before making any decisions based on this content.

This episode is based on the references listed above and was generated using Notebook LM and other AI tools. While I have reviewed the content for accuracy, it may still contain errors, inaccuracies, or omissions. Neither the producers nor any affiliates accept liability for any damages or losses arising from the use or interpretation of this content.

  continue reading

19 episodes

Artwork
iconShare
 
Manage episode 493739142 series 3655012
Content provided by kathrynj2. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by kathrynj2 or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.

This episode explores and academic paper on the replication of hedge fund strategies using publicly available data and machine learning techniques, specifically autoencoders for dimension reduction and Generative Adversarial Networks (GANs) for synthesizing additional data. The author aims to demonstrate that such replicated portfolios can outperform traditional hedge fund returns after accounting for fees and transaction costs, thereby questioning the efficiency of current hedge fund performance. The research systematically evaluates different replication methodologies ultimately highlighting the superior performance and lower turnover achieved by the autoencoder-based strategies, especially when augmented with synthetically generated data. It presents a new way to benchmark hedge fund performance and potentially offers investors a more efficient alternative to direct hedge fund investment.

References

Shen, Kaiwen, Do You Really Need to Pay 2/20? Hedge Fund Strategy Replication via Machine Learning (October 10, 2022). Available at SSRN: https://ssrn.com/abstract=4243861 or http://dx.doi.org/10.2139/ssrn.4243861

Podcast Disclaimer

This podcast is an independent production and is not affiliated with or endorsed by any third-party entities unless explicitly stated. The content is for educational and informational purposes only and does not constitute financial, investment, legal, or professional advice. Listeners should consult qualified professionals before making any decisions based on this content.

This episode is based on the references listed above and was generated using Notebook LM and other AI tools. While I have reviewed the content for accuracy, it may still contain errors, inaccuracies, or omissions. Neither the producers nor any affiliates accept liability for any damages or losses arising from the use or interpretation of this content.

  continue reading

19 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Copyright 2025 | Privacy Policy | Terms of Service | | Copyright
Listen to this show while you explore
Play