Search a title or topic

Over 20 million podcasts, powered by 

Player FM logo
Artwork

Content provided by EDGE AI FOUNDATION. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by EDGE AI FOUNDATION or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Deploying TinyML Models at Scale: Insights on Monitoring and Automation with Alessandro Grande of Edge Impulse

20:34
 
Share
 

Manage episode 444991878 series 3574631
Content provided by EDGE AI FOUNDATION. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by EDGE AI FOUNDATION or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.

Unlock the secrets of deploying TinyML models in real-world scenarios with Alessandro Grande, Head of Product at Edge Impulse. Curious about how TinyML has evolved since its early days? Alessandro takes us through a journey from his initial demos at Arm to the sophisticated, scalable deployments we see today. Learn why continuous model monitoring is not just important but essential for the reliability and functionality of machine learning applications, especially in large-scale IoT deployments. Alessandro shares actionable insights on how to maintain a continuous lifecycle for ML models to handle unpredictable changes and ensure sustained success.
Delve into the intricacies of health-related use cases with a spotlight on the HIFE AI cough monitoring system. Discover best practices for data collection and preparation, including identifying outliers and leveraging Generative AI like ChatGPT 4.0 for efficient data labeling. We also emphasize the importance of building scalable infrastructure for automated ML development. Learn how continuous integration and continuous deployment (CI/CD) pipelines can enhance the lifecycle management of ML models, ensuring security and scalability from day one. This episode is a treasure trove of practical advice for anyone tackling the challenges of deploying ML models in diverse environments.

Send us a text

Support the show

Learn more about the EDGE AI FOUNDATION - edgeaifoundation.org

  continue reading

Chapters

1. Deploying TinyML Models at Scale: Insights on Monitoring and Automation with Alessandro Grande of Edge Impulse (00:00:00)

2. Model Monitoring in Real-World Deployment (00:00:05)

3. Health Workflow and Data Collection (00:11:26)

4. Automated Model Deployment in Production (00:18:14)

37 episodes

Artwork
iconShare
 
Manage episode 444991878 series 3574631
Content provided by EDGE AI FOUNDATION. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by EDGE AI FOUNDATION or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.

Unlock the secrets of deploying TinyML models in real-world scenarios with Alessandro Grande, Head of Product at Edge Impulse. Curious about how TinyML has evolved since its early days? Alessandro takes us through a journey from his initial demos at Arm to the sophisticated, scalable deployments we see today. Learn why continuous model monitoring is not just important but essential for the reliability and functionality of machine learning applications, especially in large-scale IoT deployments. Alessandro shares actionable insights on how to maintain a continuous lifecycle for ML models to handle unpredictable changes and ensure sustained success.
Delve into the intricacies of health-related use cases with a spotlight on the HIFE AI cough monitoring system. Discover best practices for data collection and preparation, including identifying outliers and leveraging Generative AI like ChatGPT 4.0 for efficient data labeling. We also emphasize the importance of building scalable infrastructure for automated ML development. Learn how continuous integration and continuous deployment (CI/CD) pipelines can enhance the lifecycle management of ML models, ensuring security and scalability from day one. This episode is a treasure trove of practical advice for anyone tackling the challenges of deploying ML models in diverse environments.

Send us a text

Support the show

Learn more about the EDGE AI FOUNDATION - edgeaifoundation.org

  continue reading

Chapters

1. Deploying TinyML Models at Scale: Insights on Monitoring and Automation with Alessandro Grande of Edge Impulse (00:00:00)

2. Model Monitoring in Real-World Deployment (00:00:05)

3. Health Workflow and Data Collection (00:11:26)

4. Automated Model Deployment in Production (00:18:14)

37 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Listen to this show while you explore
Play