Search a title or topic

Over 20 million podcasts, powered by 

Player FM logo
Artwork

Content provided by Databricks. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Databricks or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Retrieval, rerankers, and RAG tips and tricks | Data Brew | Episode 39

45:22
 
Share
 

Manage episode 467662617 series 2814833
Content provided by Databricks. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Databricks or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.

In this episode, Andrew Drozdov, Research Scientist at Databricks, explores how Retrieval Augmented Generation (RAG) enhances AI models by integrating retrieval capabilities for improved response accuracy and relevance.
Highlights include:
- Addressing LLM limitations by injecting relevant external information.
- Optimizing document chunking, embedding, and query generation for RAG.
- Improving retrieval systems with embeddings and fine-tuning techniques.
- Enhancing search results using re-rankers and retrieval diagnostics.
- Applying RAG strategies in enterprise AI for domain-specific improvements.

  continue reading

43 episodes

Artwork
iconShare
 
Manage episode 467662617 series 2814833
Content provided by Databricks. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Databricks or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.

In this episode, Andrew Drozdov, Research Scientist at Databricks, explores how Retrieval Augmented Generation (RAG) enhances AI models by integrating retrieval capabilities for improved response accuracy and relevance.
Highlights include:
- Addressing LLM limitations by injecting relevant external information.
- Optimizing document chunking, embedding, and query generation for RAG.
- Improving retrieval systems with embeddings and fine-tuning techniques.
- Enhancing search results using re-rankers and retrieval diagnostics.
- Applying RAG strategies in enterprise AI for domain-specific improvements.

  continue reading

43 episodes

すべてのエピソード

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Copyright 2025 | Privacy Policy | Terms of Service | | Copyright
Listen to this show while you explore
Play