Search a title or topic

Over 20 million podcasts, powered by 

Player FM logo
Artwork

Content provided by Richard M. Golden, M.S.E.E., and B.S.E.E.. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Richard M. Golden, M.S.E.E., and B.S.E.E. or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.
Player FM - Podcast App
Go offline with the Player FM app!

LM101-030: How to Improve Deep Learning Performance with Artificial Brain Damage (Dropout and Model Averaging)

32:02
 
Share
 

Manage episode 230297572 series 2497400
Content provided by Richard M. Golden, M.S.E.E., and B.S.E.E.. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Richard M. Golden, M.S.E.E., and B.S.E.E. or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.

Deep learning machine technology has rapidly developed over the past five years due in part to a variety of actors such as: better technology, convolutional net algorithms, rectified linear units, and a relatively new learning strategy called "dropout" in which hidden unit feature detectors are temporarily deleted during the learning process. This article introduces and discusses the concept of "dropout" to support deep learning performance and makes connections of the "dropout" concept to concepts of regularization and model averaging. For more details and background references, check out: www.learningmachines101.com !

  continue reading

85 episodes

Artwork
iconShare
 
Manage episode 230297572 series 2497400
Content provided by Richard M. Golden, M.S.E.E., and B.S.E.E.. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Richard M. Golden, M.S.E.E., and B.S.E.E. or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.

Deep learning machine technology has rapidly developed over the past five years due in part to a variety of actors such as: better technology, convolutional net algorithms, rectified linear units, and a relatively new learning strategy called "dropout" in which hidden unit feature detectors are temporarily deleted during the learning process. This article introduces and discusses the concept of "dropout" to support deep learning performance and makes connections of the "dropout" concept to concepts of regularization and model averaging. For more details and background references, check out: www.learningmachines101.com !

  continue reading

85 episodes

सभी एपिसोड

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Copyright 2025 | Privacy Policy | Terms of Service | | Copyright
Listen to this show while you explore
Play