Search a title or topic

Over 20 million podcasts, powered by 

Player FM logo
Artwork

Content provided by Carnegie Mellon University Software Engineering Institute and Members of Technical Staff at the Software Engineering Institute. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Carnegie Mellon University Software Engineering Institute and Members of Technical Staff at the Software Engineering Institute or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.
Player FM - Podcast App
Go offline with the Player FM app!

What Could Possibly Go Wrong? Safety Analysis for AI Systems

36:14
 
Share
 

Manage episode 516925411 series 3018913
Content provided by Carnegie Mellon University Software Engineering Institute and Members of Technical Staff at the Software Engineering Institute. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Carnegie Mellon University Software Engineering Institute and Members of Technical Staff at the Software Engineering Institute or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.

How can you ever know whether an LLM is safe to use? Even self-hosted LLM systems are vulnerable to adversarial prompts left on the internet and waiting to be found by system search engines. These attacks and others exploit the complexity of even seemingly secure AI systems.

In our latest podcast from the Carnegie Mellon University Software Engineering Institute (SEI), David Schulker and Matthew Walsh, both senior data scientists in the SEI's CERT Division, sit down with Thomas Scanlon, lead of the CERT Data Science Technical Program, to discuss their work on System Theoretic Process Analysis, or STPA, a hazard-analysis technique uniquely suitable for dealing with AI complexity when assuring AI systems.

  continue reading

423 episodes

Artwork
iconShare
 
Manage episode 516925411 series 3018913
Content provided by Carnegie Mellon University Software Engineering Institute and Members of Technical Staff at the Software Engineering Institute. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Carnegie Mellon University Software Engineering Institute and Members of Technical Staff at the Software Engineering Institute or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://podcastplayer.com/legal.

How can you ever know whether an LLM is safe to use? Even self-hosted LLM systems are vulnerable to adversarial prompts left on the internet and waiting to be found by system search engines. These attacks and others exploit the complexity of even seemingly secure AI systems.

In our latest podcast from the Carnegie Mellon University Software Engineering Institute (SEI), David Schulker and Matthew Walsh, both senior data scientists in the SEI's CERT Division, sit down with Thomas Scanlon, lead of the CERT Data Science Technical Program, to discuss their work on System Theoretic Process Analysis, or STPA, a hazard-analysis technique uniquely suitable for dealing with AI complexity when assuring AI systems.

  continue reading

423 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Copyright 2025 | Privacy Policy | Terms of Service | | Copyright
Listen to this show while you explore
Play