Search a title or topic

Over 20 million podcasts, powered by 

Player FM logo

Zero Supervision Podcasts

show episodes
 
Artwork
 
Welcome to Zero Supervision Comics! Every week we discuss new releases and dive into the history of the characters so that whether you are a long time reader or just buying your first issue you can understand exactly what's going on. We post new episodes every Wednesday.
  continue reading
 
Artwork

1
Department of Statistics

Oxford University

icon
Unsubscribe
icon
icon
Unsubscribe
icon
Monthly
 
The Department of Statistics at Oxford is a world leader in research including computational statistics and statistical methodology, applied probability, bioinformatics and mathematical genetics. In the 2014 Research Excellence Framework (REF), Oxford's Mathematical Sciences submission was ranked overall best in the UK. This is an exciting time for the Department. We have now moved into our new home on St Giles and we are currently settling in. The new building provides improved lecture and ...
  continue reading
 
Loading …
show series
 
A lecture exploring alternatives to using labeled training data. Labeled training data is often scarce, unavailable, or can be very costly to obtain. To circumvent this problem, there is a growing interest in developing methods that can exploit sources of information other than labeled data, such as weak-supervision and zero-shot learning. While th…
  continue reading
 
A high-level overview of key areas of AI ethics and not-ethics, exploring the challenges of algorithmic decision-making, kinds of bias, and interpretability, linking these issues to problems of human-system interaction. Much attention is now being focused on AI Ethics and Safety, with the EU AI Act and other emerging legislation being proposed to i…
  continue reading
 
A brief introduction to various legal and procedural ethical concepts and their applications within and beyond academia. It's all very well to talk about truth, beauty and justice for academic research ethics. But how do you do these things at a practical level? If you have a big idea, or stumble across something with important implications, what d…
  continue reading
 
This seminar explains and illustrates the approach of Markov melding for joint analysis. Integrating multiple sources of data into a joint analysis provides more precise estimates and reduces the risk of biases introduced by using only partial data. However, it can be difficult to conduct a joint analysis in practice. Instead each data source is ty…
  continue reading
 
Rapid training of deep neural networks without skip connections or normalization layers using Deep Kernel Shaping. Using an extended and formalized version of the Q/C map analysis of Pool et al. (2016), along with Neural Tangent Kernel theory, we identify the main pathologies present in deep networks that prevent them from training fast and general…
  continue reading
 
Professor Denise Lievesley discusses ethical issues and codes of conduct relevant to applied statisticians. Statisticians work in a wide variety of different political and cultural environments which influence their autonomy and their status, which in turn impact on the ethical frameworks they employ. The need for a UN-led fundamental set of princi…
  continue reading
 
Lionel Riou-Durand gives a talk on sampling methods. Sampling approximations for high dimensional statistical models often rely on so-called gradient-based MCMC algorithms. It is now well established that these samplers scale better with the dimension than other state of the art MCMC samplers, but are also more sensitive to tuning. Among these, Ham…
  continue reading
 
Professor Samir Bhatt gives a talk on the mathematics underpinning infectious disease models. Mathematical descriptions of infectious disease outbreaks are fundamental to understanding how transmission occurs. Reductively, two approaches are used: individual based simulators and governing equation models, and both approaches have a multitude of pro…
  continue reading
 
Caroline Uhler (MIT), gives a OxCSML Seminar on Friday 2nd July 2021. Abstract: Massive data collection holds the promise of a better understanding of complex phenomena and ultimately, of better decisions. An exciting opportunity in this regard stems from the growing availability of perturbation / intervention data (genomics, advertisement, educati…
  continue reading
 
Qiang Liu (University of Texas at Austin) gives the OxCSML Seminar on Friday 4th June 2021. Abstract: Stein's method is a powerful technique for deriving fundamental theoretical results on approximating and bounding distances between probability measures, such as central limit theorem. Recently, it was found that the key ideas in Stein's method, de…
  continue reading
 
Cynthia Rudin (Duke University) gives a OxCSML Seminar on Friday 14th May 2021. Abstract: While the trend in machine learning has tended towards more complex hypothesis spaces, it is not clear that this extra complexity is always necessary or helpful for many domains. In particular, models and their predictions are often made easier to understand b…
  continue reading
 
Aki Vehtari (Aalto University) gives the OxCSML Seminar on Friday 7th May 2021 Abstract: I discuss the use of the Pareto-k diagnostic as a simple and practical approach for estimating both the required minimum sample size and empirical pre-asymptotic convergence rate for Monte Carlo estimates. Even when by construction a Monte Carlo estimate has fi…
  continue reading
 
Quan Zhou, Texas A and M University, gives an OxCSML Seminar on Friday 25th June 2021. Abstract:In a model selection problem, the size of the state space typically grows exponentially (or even faster) with p (the number of variables). But MCMC methods for model selection usually rely on local moves which only look at a neighborhood of size polynomi…
  continue reading
 
Distinguished Speaker Seminar - Friday 18th June 2021, with Susan Murphy, Professor of Statistics and Computer Science, Harvard John A. Paulson School of Engineering and Applied Sciences. Reinforcement Learning provides an attractive suite of online learning methods for personalizing interventions in a Digital Health. However after a reinforcement …
  continue reading
 
Graduate Lecture - Thursday 3rd June 2021, with Dr Fergus Boyles. Department of Statistics, University of Oxford. Drug discovery is a long and laborious process, with ever growing costs and dwindling productivity making it ever more difficult to bring new medicines to the market in an affordable and timely fashion. There is a long history of applyi…
  continue reading
 
OxCSML Seminar - Friday 28th May 2021, presented by Alexandra Carpentier (University of Magdeburg). In this talk we will discuss the thresholding bandit problem, i.e. a sequential learning setting where the learner samples sequentially K unknown distributions for T times, and aims at outputting at the end the set of distributions whose means \mu_k …
  continue reading
 
Benjamin Guedj, University College London, gives a OxCSML Seminar on 26th March 2021. Abstract: PAC-Bayes is a generic and flexible framework to address generalisation abilities of machine learning algorithms. It leverages the power of Bayesian inference and allows to derive new learning strategies. I will briefly present the key concepts of PAC-Ba…
  continue reading
 
Karolina Dziugaite (Element AI), gives the OxCSML Seminar on 26th February 2021. Abstract: Deep learning approaches dominate in many application areas. Our understanding of generalization (relating empirical performance to future expected performance) is however lacking. In some applications, standard algorithms like stochastic gradient descent (SG…
  continue reading
 
Loading …
Copyright 2025 | Privacy Policy | Terms of Service | | Copyright
Listen to this show while you explore
Play